Recent results from the NA62 experiment

LHCP, June 3rd-7th 2024, Boston, USA Speaker: Radoslav Marchevski On behalf of the NA62 Collaboration

Outline

- New results and updates from the physics program with charged kaons at NA62
 - Measurement of the $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ process
 - Low-energy QCD tests (Chiral Perturbation Theory, χ_{PT})
 - Searches for Lepton Flavour (LF) and Lepton Number (LN) violating decays

1

$K^+ \rightarrow \pi^+ \nu \bar{\nu}$: a **golden** decay mode

• $s \rightarrow d$ transition sensitive to the CKM structure of the SM: *loop* + *CKM suppression*

- Theoretically clean process: *dominated by short-distance physics*
- $K \pi$ Form Factor (FF) extracted from $K \rightarrow \pi l v_l$: sub-% precision
- Sensitive to new physics in the lepton sector as well: *involves* v_e , v_μ , and v_τ
- Extremely rare process in the SM:

• $BR_{SM}(K^+ \to \pi^+ \nu \bar{\nu}) = (7.73 \pm 0.16_{SD} \pm 0.25_{LD} \pm 0.54_{param.}) \times 10^{-11} [arXiv:2105.02868]$

• $BR_{SM}(K^+ \to \pi^+ \nu \bar{\nu}) = (7.92 \pm 0.28_{theory}) \times 10^{-11} \times \left[\frac{|V_{cb}|}{41.0 \times 10^{-3}}\right]^{2.8} \times \left[\frac{\sin \gamma}{\sin 67^\circ}\right]^{1.39} [arXiv:2109.11032]$

Testing the SM with FCNC: BSM models

- Possibility to distinguish between NP from Majorana vs Dirac neutrinos
- Modifications of the shape of the BR as a function of q^2
- Improved measurement of $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ important

- Constraints on anomalous *ttZ* couplings
- σ_t single-top production
- $T, \delta g_b^L$ –EW precision parameters
- Correlations: EW precision physics and flavour!

The NA62 experiment @ CERN

.

•

LHC - Large Hadron Collider // SPS - Super Proton Synchrotron // PS - Proton Synchrotron // AD - Antiproton Decelerator // CLEAR - CERN Linear Electron Accelerator for Research // AWAKE - Advanced WAKefield Experiment // ISOLDE - Isotope Separator OnLine // REX/HIE - Radioactive EXperiment/High Intensity and Energy ISOLDE // LEIR - Low Energy Ion Ring // LINAC - LINear Accelerator // n_TOF - Neutrons Time Of Flight // HiRadMat - High-Radiation to Materials

- Long tradition of kaon experiments at CERN
- NA62 main target: $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ decay measurement
- Broad physics program:
 - Other rare charged kaon decays
 - Precision measurements
 - LFV/LNV searches
 - Exotic searches (FIPs, Dark photon, etc...)

NA62 collaboration ~ 300 physicists from 31 institutions

The NA62 experimental apparatus

- Secondary beam
 - $75 \pm 1 \text{ GeV/c momentum}$
 - $6\% K^+$ component
 - 60 m long fiducial volume
 - ~ 3 MHz K^+ decay rate

- Upstream detectors (*K*⁺)
 - KTAG: Differential Cherenkov counter for K⁺ ID
 - GTK: Silicon pixel beam tracker
 - CHANTI: Anti-counter against inelastic beam-GTK3 interactions

- Downstream detectors (π^+)
 - STRAW: track momentum spectrometer
 - CHOD: scintillator hodoscopes
 - LKr/MUV1/MUV2: calorimetric system
 - RICH: Cherenkov counter for $\pi/\mu/e$ ID
 - LAV/IRC/SAC: Photon veto detectors
 - MUV3: Muon veto

Analysis strategy

- Highly boosted decay: $(75 \pm 1) \text{ GeV/c } K^+ (\gamma \sim 150)$
- Large undetectable missing energy carried away by the neutrinos
- All energy from visible particles must be detected
- π^+ momentum range 15 45 GeV/c (E_{miss} > 30 GeV)
- Hermetic detector coverage and O(100%) detector efficiency needed

• <u>Requirements:</u>

- Kinematic suppression $O(10^4)$
- μ^+ rejection $O(10^7)$
- π^0 rejection $O(10^7)$
- Time resolution *O*(100 ps)

- Highly boosted decay: $(75 \pm 1) \text{ GeV/c } K^+ (\gamma \sim 150)$
- Large undetectable missing energy carried away by the neutrinos
- All energy from visible particles must be detected
- π^+ momentum range 15 45 GeV/c ($E_{miss} > 30$ GeV)
- Hermetic detector coverage and O(100%) detector efficiency needed

• <u>Requirements:</u>

• Kinematic suppression – $0(10^4)$

 π^+ momentum [GeV/c]

- μ^+ rejection $O(10^7)$
- π^0 rejection $O(10^7)$
- Time resolution *O*(100 ps)

Results NA62 Run 1 (2016-18)

	Background (2018)
Expected SM signal	$7.58(40)_{\rm syst}(75)_{\rm ext}$
$K^{+} \rightarrow \pi^{+}\pi^{0}(\gamma)$	0.75(4)
$K^{+} \rightarrow \mu^{+} \nu(\gamma)$	0.49(5)
$K^+ \rightarrow \pi^+ \pi^- e^+ \nu$	0.50(11)
$K^+ \rightarrow \pi^+ \pi^+ \pi^-$	0.24(8)
$K^+ \rightarrow \pi^+ \gamma \gamma$	< 0.01
$K^{\scriptscriptstyle +} \to \pi^0 l^{\scriptscriptstyle +} \nu$	< 0.001
Upstream	3.30 ^{+0.98} -0.73
Total background	5.28 ^{+0.99} -0.74

•
$$N_{\pi\nu\bar{\nu}}^{exp} = 10.01 \pm 0.42_{syst} \pm 1.19_{ext}$$

- $N_{bg}^{exp} = 7.03_{-0.82}^{+1.05}$
- SES = $(0.839 \pm 0.053_{syst}) \times 10^{-11}$
- $BR(K^+ \rightarrow \pi^+ \nu \overline{\nu}) = (10.6^{+4.0}_{-3.4}|_{stat} \pm 0.9_{syst}) \times 10^{-11} [JHEP 06 (2021) 093]$

 $N_{obs} = 20$ 3.4 σ evidence for $K^+ \rightarrow \pi^+ \nu \bar{\nu}$

$K^+ \rightarrow \pi^+ \nu \bar{\nu}$ in Run 2 (2021+)

Hardware improvements after LS2

- 4th GTK station to improve *K*⁺ tracking
- VetoCounter in upstream region to reduce upstream background and Anti0 to reduce muon halo
- HASC calorimeter downstream to reject γ from conversions with the RICH beam pipe
- Cedar-H: Cherenkov detector for *K*⁺-id filled with Hydrogen instead of Nitrogen

Expected events (R1+R2)			
W	ork in pros	2018	2021 + 2022
	$K^+ \to \pi^+ \nu \bar{\nu} \ (SM)$	$7.58 \pm 0.40_{syst} \pm 0.75_{ext}$	10.07 ± 0.31
	$K^+ o \pi^+ \pi^0(\gamma)$	0.75 ± 0.05	0.86 ± 0.06
	$K^+ ightarrow \mu^+ u(\gamma)$	0.64 ± 0.08	0.93 ± 0.20
	$K^+ \to \pi^+\pi^- e^+ \nu$	0.51 ± 0.10	$0.84\substack{+0.35 \\ -0.28}$
	$K^+ \to \pi^+\pi^+\pi^-$	0.22 ± 0.10	0.11 ± 0.03
	$K^+ \to \pi^+ \gamma \gamma$	< 0.01	0.01 ± 0.01
	$K^+ \to \pi^0 l^+ \nu$	< 0.001	< 0.001
	Upstream	$3.30\substack{+1.00 \\ -0.75}$	$8.0^{+2.2}_{-1.8}$
	Total background	$5.42^{+1.00}_{-0.75}$	$10.8^{+2.2}_{-1.9}$

Variable	2021 ($t > 2 \mathrm{s}$)	2022	$21{+}22$
$(N_{\pi\pi}D_0)/400 \ [\times 10^7]$	3.713	16.374	20.087
$arepsilon_{trig}$	$(83.5 \pm 1.3)\%$	$(86.3 \pm 1.5)\%$	$(85.8 \pm 1.4)\%$
$arepsilon_{RV}$	$(63.0 \pm 0.5)\%$	$(63.8 \pm 0.5)\%$	$(63.6 \pm 0.5)\%$
$A_{\pi\pi}$	aress (*)	$13.525 \pm 0.005\%$)
$A_{\pi\nu\bar{ u}}$ Work in pro-	n -	$7.7\pm0.2\%$	
$\mathcal{B}_{SES}[imes 10^{-11}]$	4.68 ± 0.17	1.01 ± 0.03	0.83 ± 0.03
$N^{ m SM,exp}_{\pi uar u}$	1.80 ± 0.06	8.28 ± 0.24	10.07 ± 0.31
$N_{\pi\nu\bar{\nu}}^{\mathrm{SM,exp}}$ per burst	1.7×10^{-5}	$2.5 imes 10^{-5}$	$2.3 imes 10^{-5}$

Studies ongoing to understand background

scaling between Run 1 and Run 2

10

(*) CERN-SPSC-2024-012 / SPSC-SR-345

$K^+ \rightarrow \pi^+ \nu \bar{\nu}$ in Run 2 (2021+)

Analysis improvements after LS2

- Signal acceptance improved by 20%, maintaining background rejection at the same level, $A_{\pi\nu\overline{\nu}}^{2018} = (6.4 \pm 0.6)\%$
- Uncertainty of the Signal Event Sensitivity improved significantly in Run 2 ($7\% \rightarrow 4\%$) due to more precise understanding of the trigger and random veto efficiencies
- Signal yield improved by 50% , $N_{\pi\nu\overline{\nu}}$ /burst²⁰¹⁸ = 1.7×10⁻⁵

Variable	2021 ($t > 2 \mathrm{s}$)	2022	$21 {+} 22$
$(N_{\pi\pi}D_0)/400 \ [\times 10^7]$	3.713	16.374	20.087
$arepsilon_{trig}$	$(83.5 \pm 1.3)\%$	$(86.3 \pm 1.5)\%$	$(85.8 \pm 1.4)\%$
ε_{RV}	$(63.0 \pm 0.5)\%$	$(63.8 \pm 0.5)\%$	$(63.6 \pm 0.5)\%$
$A_{\pi\pi}$	nress (*)	$13.525 \pm 0.005\%$)
$A_{\pi\nu\bar{\nu}}$ Work in pro-	5	$7.7\pm0.2\%$	
$\mathcal{B}_{SES}[imes 10^{-11}]$	4.68 ± 0.17	1.01 ± 0.03	0.83 ± 0.03
$N^{ m SM,exp}_{\pi uar u}$	1.80 ± 0.06	8.28 ± 0.24	10.07 ± 0.31
$N_{\pi\nu\bar{\nu}}^{\mathrm{SM,exp}}$ per burst	1.7×10^{-5}	$2.5 imes 10^{-5}$	2.3×10^{-5}

Studies ongoing to understand background

scaling between Run 1 and Run 2

11

$K^+ \rightarrow \pi^+ \nu \bar{\nu}$ in Run 2 (2021+)

- Work ongoing to finalise the first results with Run 2 data (2021+22)
- Data in 2021+22 taken pushing the hardware limit of NA62
- Essential studies performed to understand optimal intensity with best sensitivity to $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ decays
- Operating at intensities optimized to achieve best Single Event Sensitivity in 2023 and 2024!

Low-energy QCD tests: $K^+ \rightarrow \pi^+ \gamma \gamma (K_{\pi\gamma\gamma})$

• Radiative non-leptonic kaon decays allow tests of Chiral Perturbation Theory (χ_{PT}), describing low-energy QCD processes

• Main kinematic variables:
$$\mathbf{z} = \frac{(p_{\gamma 1} + p_{\gamma 2})^2}{m_K^2} = \frac{m_{\gamma \gamma}^2}{m_K^2}, \mathbf{y} = \frac{P_K(Q_{\gamma_1} - Q_{\gamma_2})}{m_K^2}$$

• The differential decay rate parametrized in χ_{PT} : strong dependence on *z* and weak dependence on *y* only free parameter

$$\frac{d^2\Gamma}{dydz}(\hat{\boldsymbol{c}}, y, z) = \frac{m_K}{2^9\pi^3} \left[z^2(|\boldsymbol{A}(\hat{\boldsymbol{c}}, z, y^2) + \boldsymbol{B}(z)|^2 + |\boldsymbol{C}(z)|^2) + \left(y^2 - \frac{1}{4}\lambda(1, r_\pi^2, z)\right)^2 |\boldsymbol{B}(z)|^2 \right]$$

lowest order loop
amplitude $\mathcal{O}(p^4)$
next to leading order
loop amplitude $\mathcal{O}(p^6)$

• BR($K^+ \rightarrow \pi^+ \gamma \gamma$) and \hat{c} depend on 8 external parameters fixed using Phys. Lett. B 835 (2022) 137594

$K^+ \rightarrow \pi^+ \gamma \gamma (K_{\pi \gamma \gamma})$ selection

- Analysis using Run 1 data sample
- $K^+ \rightarrow \pi^+ \gamma \gamma$ selection
 - one single positive π^+ track
 - $K^+ \pi^+$ matching and vertex reconstruction
 - 2 good γ clusters in the LKr calorimeter
 - Kinematic cuts on total E, p_T and $m_{\pi\gamma\gamma}$
- Background sources
 - Cluster merging in LKr:

 $K^{+} \to \pi^{+} \pi^{0} \gamma (\pi^{0} \to \gamma \gamma)$ $K^{+} \to \pi^{+} \pi^{0} \pi^{0} (\pi^{0} \to \gamma \gamma)$

- Multi-track events with tracks missing (mainly $K \to \pi\pi\pi)$
- $K^+ \rightarrow \pi^+ \pi^0$ used as a normalisation channel to measure N_K

After selection: $N_K = (5.55 \pm 0.03) \times 10^{10}$ $N_{obs} = 3984$ events $N_{bg}^{exp} = 291 \pm 14$ events

Phys. Lett. B 850 (2024) 138513

$$K^+ \rightarrow \pi^+ \gamma \gamma (K_{\pi \gamma \gamma})$$
 spectrum

• Reconstructed *z* spectrum of the signal candidates: $\mathbf{z} = (\mathbf{P}_K - \mathbf{P}_{\pi})^2 / M_K^2$ (better resolution than $m_{\gamma\gamma}^2 / m_K^2$)

Model-dependent measurement: MC spectrum reweighted for different values of \hat{c} and extracting the best-fit value

First evidence that the $O(p^4)$ description is not compatible with the data: $O(p^6)$ is required

 $K^+ \rightarrow \pi^+ \gamma \gamma (K_{\pi \nu \nu})$ results

• Model-independent $BR(K^+ \to \pi^+ \gamma \gamma)$ measurement and the corresponding decay width are computed in ach z bin $BR(K^+ \to \pi^+ \gamma \gamma)_{\chi_{PT}} = (9.61 \pm 0.15_{stat} \pm 0.07_{syst}) \times 10^{-7}$

 $BR(K^+ \to \pi^+ \gamma \gamma)_{MI} = (9.46 \pm 0.19_{stat} \pm 0.07_{syst}) \times 10^{-7}$

16

Comparison between model-independent measurement and $O(p^6)$ parametrisation in χ_{PT}

 \hat{c} value depends on the external parameter values. To test the consistency of the result with the old measurements \hat{c} is also evaluated with the external parameter values used by E878 (triangle) and NA48/2-NA62-2007 (square)

Search for ALPs in $K^+ \rightarrow \pi^+ a$, $a \rightarrow \gamma \gamma$ decays

- Hidden sector scenario in which axion-like particle (ALP) couples to gluons: BC11 (if $m_a < 3m_{\pi}, a \rightarrow \gamma\gamma$)
- Peak search in $m_a = \sqrt{(P_K P_\pi)^2}$: 287 hypotheses, 207-350 MeV/c² range, 0.5 MeV/c² step
- m_a resolution: $0.2 2.0 \text{ MeV}/c^2$ across the mass range
- Upper limit at 90% CL using CL_s method set to N_s (number of signal events) in each bin

Assuming **prompt** $a \rightarrow \gamma \gamma$ **decay** ($\tau_a = 0$) we get an upper limit on the branching ratio

$$BR(K^+ \to \pi^+ a) = \frac{N_S}{N_K \cdot A_S}$$

If we assume $\tau_a \neq 0$ a signal acceptance loss function is considered increasing with τ_a due to vertex displacement $(f_G^{-1} \sim \tau_a^{-0.5})$

LFV/LNV searches: $K^+ \rightarrow \mu^- \nu e^+ e^+$

Lepton flavour or lepton number violating decay depending on the neutrino flavour: v_e or v_μ

Potential observation will provide

- Evidence for BSM models involving flavour violating ALPs and Z' (LFV)
 v_{*}
 Evidence for Majorana neutrino (LNV)
 - **Past upper limit** $BR(K^+ \rightarrow \mu^- \nu e^+ e^+) < 2.1 \times 10^{-8}$

Selection •

- Exactly three well separated downstream tracks (STRAW) forming a vertex with $Q_{vtx} = +1$ •
- Particle identification of the track candidates (μ^-, e^+, e^+) •
- Photon veto downstream of the vertex (against Dalitz decays) • $K^+ \rightarrow \pi^+ \pi^0_D, K^+ \rightarrow \pi^0_D e^+ \nu (\pi^0_D \rightarrow \gamma e^+ e^-)$

Analysis using Run 1 dataset

$K^+ \rightarrow \mu^- \nu e^+ e^+$ analysis and result

- $m_{miss}^2 = (P_K P_\mu P_{e1} P_{e2})^2 = m_\nu^2$
- Signal region: $(-6 \times 10^{-3} < m_{miss}^2 < 4 \times 10^{-3})$ GeV/c^2
- K^+ in the fiducial region: $1.97(2)_{stat}(2)_{syst}(6)_{ext} \times 10^{12}$
- $K^+ \rightarrow \pi^+ e^+ e^-$ used for normalization

•

• Same 3-track vertex selection + beam constraint $(|P_{beam} - P_{vtx}| < 2\text{GeV}/c)$

Particle identification of the track candidates (π^+, e^+, e^-)

Lower	Signal	Upper
< 0.07	< 0.07	$1412~\pm~11$
$0.01~\pm~0.01$	$0.16~\pm~0.02$	$867~\pm~1$
< 0.03	$0.06~\pm~0.03$	$1.5~\pm~0.3$
$0.01~\pm~0.01$	$0.01~\pm~0.01$	$0.14~\pm~0.03$
$0.02~\pm~0.01$	$0.01~\pm~0.01$	$0.02~\pm~0.01$
< 0.01	< 0.01	$0.05~\pm~0.02$
$0.04~\pm~0.02$	$0.26~\pm~0.04$	$2281~\pm~11$
0	0	2271
	$\begin{tabular}{l} Lower \\ < 0.07 \\ 0.01 \ \pm \ 0.01 \\ < 0.03 \\ 0.01 \ \pm \ 0.01 \\ 0.02 \ \pm \ 0.01 \\ < 0.01 \\ 0.04 \ \pm \ 0.02 \\ 0 \end{tabular}$	$\begin{array}{c c} \text{Lower} & \text{Signal} \\ < 0.07 & < 0.07 \\ 0.01 \pm 0.01 & 0.16 \pm 0.02 \\ < 0.03 & 0.06 \pm 0.03 \\ 0.01 \pm 0.01 & 0.01 \pm 0.01 \\ 0.02 \pm 0.01 & 0.01 \pm 0.01 \\ < 0.01 & < 0.01 \\ < 0.01 & < 0.01 \\ 0.04 \pm 0.02 & 0.26 \pm 0.04 \\ 0 & 0 \end{array}$

After signal selection: $N_{obs} = 0$ events $N_{bg}^{exp} = 0.26 \pm 0.04$ events

Phys. Lett. B 830 (2023) 137679 $BR(K^+ \to \mu^- \nu e^+ e^+) < 8.1 \times 10^{-11} @90\% CL$

Improvement by a factor 250 over previous searches

 $K^+ \rightarrow \pi^+ e^+ e^- e^+ e^- decays$

• Heavily suppressed SM process with $BR = (7.2 \pm 0.7) \times 10^{-11}$ (outside π^0 pole) [PRD 106, L071301]

Topologies at leading QED/ChPT order:

- Dark sector probe:
 - $K^+ \rightarrow \pi^+ aa$ with $a \rightarrow e^+e^-$ QCD axion, e.g. $m_a = 17 \text{ MeV}$, $BR = 1.7 \times 10^{-5}$
 - $K^+ \to \pi^+ S$ with $S \to A'A'$ dark scalar and $A' \to e^+e^-$ dark photon $(m_S > 2m_{A'})$

[arXiv:2012.02142] [arXiv:2012.02142]

• Goals to search for: 1) SM process ($K_{\pi 4e}$) 2) QCD di-axion 3) Dark cascade

$K^+ \rightarrow \pi^+ e^+ e^- e^+ e^-$ analysis

- Complete Run 1 data set analyzed
- Signal ($K_{\pi 4e}$)
 - Kinematic PID of positive tracks
 - Conditions on $m_{\pi 4e}$, $m_{miss}^2(1)$
 - m_{4e} outside the π^0 mass region
- Signal ($K^+ \rightarrow \pi^+ aa$ "Dark")
 - Same selection as $K_{\pi 4e}$
 - Choice of the optimal e^+e^- mass pair
- Normalization: $K^+ \rightarrow \pi^+ \pi^0_{DD}(2)$
 - 5 track topology and PID as for $K_{\pi 4e}$
 - Kinematic condition on m_{4e}

After signal selection: $N_{obs} = 0$ events $N_{bg}^{exp} = 0.18 \pm 0.06$ events

$K^+ \rightarrow \pi^+ e^+ e^- e^+ e^-$ results

$K_{\pi 4e}$ SM

- Acceptance from MC
- Resonant amplitude negligible for selected events

$K^+ \rightarrow \pi^+ a a$

- Uniform phase space
- Mass scan with 5 MeV/ c^2 step

$K^+ \to \pi^+ S, S \to AA$

- Di-axion *aa* mass scan
- (*m_A*, *m_S*) distribution smoothing
 (low MC statistics)

Conclusions

$K^+ \to \pi^+ \gamma \gamma$	NA62 Run 1	PLB 850 (2024) 138513
$X^+ \to \pi^+ e^+ e^- e^+ e^-$	$\rm NA62~Run~1$	PLB 846 (2023) 138193
$K^+ o \mu^- \nu e^+ e^+$	$\rm NA62~Run~1$	PLB 838 (2023) 137679
$K^+ \to \pi^0 e^+ \nu \gamma$	$\rm NA62~Run~1$	JHEP 09 (2023) 040
$K^+ \to \mu^- \nu e^+ e^+$	$\rm NA62~Run~1$	PLB 838 (2023) 137679
$K^+ \to \pi^-(\pi^0) e^+ e^+$	$\rm NA62~Run~1$	PLB 830 (2022) 137172
$K^+ o \pi^+ \mu^+ \mu^-$	$\rm NA62~Run~1$	JHEP 11 (2022) 011
$^{0} \rightarrow \mu^{-} e^{+}$	$\rm NA62~Run~1$	PRL 127 (2021) 131802
$K^+ \to \pi^+ \mu^- e^+$	$\rm NA62~Run~1$	$\mathrm{PRL}\;127\;(2021)\;131802$
$X^+ \to \pi^- \mu^+ e^+$	$\rm NA62~Run~1$	PRL 127 (2021) 131802
$K^+ \to \pi^+ \nu \bar{\nu}$	$\rm NA62~Run~1$	JHEP 06 (2021) 093

- The NA62 experiment is in full steam
- New results and many new analyses to come
- Work ongoing to finalise the flagship $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ analysis, with Run 2 data (2021+22)
 - Significantly improved sensitivity with respect to Run 1
 - Stay tuned for results in the near future

NA62 will take data until the end of 2025

Many new exciting measurements and searches to come with the full data set!