

Lifetime Measurements from ATLAS

Dr Andy Wharton – On Behalf of the ATLAS Collaboration.

LHCP 2024 – Northeastern University, Boston: 4th June, 2024

A Lifetime Measurements' from ATLAS

Dr Andy Wharton – On Behalf of the ATLAS Collaboration.

LHCP 2024 – Northeastern University, Boston: 4th June, 2024

Introduction

- ATLAS has a rich and diverse physics program.
 - Active b-physics and light states community.
- Focus today on a recent b-physics result and future BLS prospects:
 - $B_s \rightarrow \mu^+ \mu^-$ effective lifetime measurement, $\tau_{\mu\mu}$, in 2015 2016 data.
 - <u>JHEP09(2023)199</u> (also <u>JHEP04(2019)098</u>)
- Other public results from the BLS group can be found <u>here</u>...
- ...and at other talks at LHCP 2024!

b-Physics at ATLAS

- 139 fb⁻¹ of pp collisions collected during the LHC's Run2.
 - 26.9 fb⁻¹ in Run1, 300 fb⁻¹ for Run3.
 - > 2 million bb pairs a second.
- b-Physics studies focus mainly on:
 - Muonic triggers/final states.
 - Full-reconstruction.
- Low-pT (di-)muon triggers:
 - Vertex + mass cuts for J/ψ triggers.
 - Tracks + cuts for +2/+3/+4 track signals.

$B_s \rightarrow \mu^+ \mu^-$

Introduction - 1

- FCNC decays are heavily suppressed in the SM.
 - Loop and/or box diagrams, $B_s \rightarrow \mu^+ \mu^-$ also helicity suppressed.
 - In the SM:
 - $Br \sim 10^{-9}$
 - Only the CP-odd/heavy eigenstate will decay into $\mu^+\mu^-$.
- However...
 - Significant differences to SM predictions with NP.
 - For example, <u>JHEP05(2017)076</u>.
 - CP-even/light eigenstate may contribute to $\mu^+\mu^-$ with NP.
 - NP may introduce one without the other, need to check both.

Introduction - 1

- $\Delta \tau_{H}$ and τ_{H} well measured experimentally:
 - Δτ_H = 0.193 ps.
 - τ_H = 1.624 ± 0.009 ps.
 - From the <u>HFLAV</u> and <u>PDG</u> overviews.
- Recent results from:
 - <u>CMS</u>.
 - <u>LHCb</u>.
 - <u>Combinations</u>.

Analysis Strategy - 1

• Event selection based on <u>JHEP04(2019)098</u>.

- BDT updates:
 - BDT windows.
 - Di-muon and partial B decays.
 - Simple accept/reject.
- Unbinned ML fit of $m(\mu^+\mu^-)$.
 - Signal PDF: Double Gaussian.
 - SSSV Background: Exponential.
 - SS, Same-Side: $b \rightarrow c \rightarrow s + 2$ muonic W^{\pm}
 - SV, Same-Vertex: $B \rightarrow J/\psi \ \mu \ X$
 - Combinatorial: Linear.

Analysis Strategy - 2

• <u>sPlot</u> to extract signal lifetime \rightarrow template fits against MC.

Analysis Strategy - 3

- Duplicate analysis with $B^{\pm} \rightarrow J/\psi K^{\pm}$
- Validate method, study systematics.
 - Different triggers/rescales.
- Fitted lifetime, $\tau_{B^{\pm}} = 1.76$ ps.
 - World average, 1.641 ps.

Estimating Statistical Errors - 1

- Constant width bins.
 - Optimised for statistical error.
- Observed bias in fits, (82 ± 4) fs.
 - Subtracted from best-fit value.
- Errors determined from toy MC.
 - Almost entirely.

Estimating Statistical Errors - 2

• χ^2 distribution from fit is non-Gaussian.

Estimating Systematic Errors - 1

• Three types of systematics considered:

- Fit assumptions.
 - Background shapes.
 - sPlot.
- MC mis-modelling.
 - Reconstruction effects underestimated in MC.
 - Differences between signal/background/reference channels.
- Neglected backgrounds.
 - Assumes only heavy eigenstate contributes.

Estimating Systematic Errors - 2

	Uncertainty source	$\Delta au^{ m Obs}_{\mu\mu}$ [fs]
	Data - MC discrepancies	134
Conservatively symmetrised. • Added in quadrature.	SSSV lifetime model	60
	Combinatorial lifetime model	56
	B kinematic reweighting	55
	B isolation reweighting	32
	SSSV mass model	22
	B_d background	16
	Fit bias lifetime dependency and B_s^0 eigenstates admixture	15
	Combinatorial mass model	14
	Pileup reweighting	13
	B_c background	10
	Muon Δ_{η} correction	6
	$B \rightarrow hh'$ background	3
	Muon reconstruction SF reweighting	2
	Semileptonic background	2
	Trigger reweighting	1
	Total	174

Results

• $\tau_{\mu\mu} = (0.99^{+0.42}_{-0.07} \text{ (stat.)} \pm 0.17 \text{ (syst.)} \text{ ps.}$ CMS 2011-2016 <u>SM prediction</u>: 1.624 ± 0.009 ps. LHCb 2011-2016 LHCb+CMS 2011-2016 Consistent with other LHC measurements. LHCb 2011-2018 CMS 2016-2018 No evidence of NP. ATLAS ATLAS 2015-2016 √s=13 TeV, 26.3 fb⁻¹ 2.5 1.5 2 3 3.5 $B_s^0 \rightarrow \mu \mu$ Effective Lifetime [ps]

Future Prospects and Summary

Future Prospects

17

- Full Run2 analysis underway.
 - And many, many more!
- Better...
 - Alignment.
 - MC Data Reco agreement.
- It's the economytriggers, stupid...
 - Improved L1Topo triggers.
 - Geometric/Kinematic relationships.
 - Still running with no d₀ cuts!

Summary

- ATLAS is producing competitive results.
 - And actively collaborating with our LHC partners!
- ATLAS' B_s → μ⁺μ⁻ results are broadly consistent with SM predictions.
 But no NP... ⊗
- All of these analyses are currently working toward full Run2 results.
- We are well prepared for Run3 data.

Backup

ATLAS

Muon Spectrometer Performance - 2

23

η

$B_{s} \rightarrow \mu^{+} \mu^{-}$ Branching Ratio

Mass PDFs

BDT Inputs

Variable	Description
p_{T}^{B}	Magnitude of the <i>B</i> candidate transverse momentum $\overrightarrow{p_T}^B$.
$\chi^2_{\rm PV,DV}{}_{xy}$	Compatibility of the separation $\overrightarrow{\Delta x}$ between production (i.e. associated PV) and decay (DV) vertices in the transverse projection: $\overrightarrow{\Delta x}_{T} \cdot \Sigma_{\overrightarrow{\Delta x}_{T}}^{-1} \cdot \overrightarrow{\Delta x}_{T}$, where $\Sigma_{\overrightarrow{\Delta x}_{T}}$ is the covariance matrix.
$\Delta R_{\rm flight}$	Three-dimensional angular distance between \overrightarrow{p}^B and $\overrightarrow{\Delta x}$: $\sqrt{\alpha_{2D}^2 + (\Delta \eta)^2}$
$ \alpha_{2D} $	Absolute value of the angle in the transverse plane between $\overrightarrow{p_T}^B$ and $\overrightarrow{\Delta x_T}$.
L_{xy}	Projection of $\overrightarrow{\Delta x_T}$ along the direction of $\overrightarrow{p_T}^B$: $(\overrightarrow{\Delta x_T} \cdot \overrightarrow{p_T}^B)/ \overrightarrow{p_T}^B $.
IP_B^{3D}	Three-dimensional impact parameter of the B candidate to the associated PV.
$DOCA_{\mu\mu}$	Distance of closest approach (DOCA) of the two tracks forming the <i>B</i> candidate (three-dimensional).
$\Delta \phi_{\mu\mu}$	Azimuthal angle between the momenta of the two tracks forming the B candidate.
$ d_0 ^{\max}$ -sig.	Significance of the larger absolute value of the impact parameters to the PV of the tracks forming the B candidate, in the transverse plane.
$ d_0 ^{\min}$ -sig.	Significance of the smaller absolute value of the impact parameters to the PV of the tracks forming the <i>B</i> candidate, in the transverse plane.
$P_{ m L}^{ m min}$	The smaller of the projected values of the muon momenta along $\overrightarrow{p_T}^B$.
<i>I</i> _{0.7}	Isolation variable defined as ratio of $ \overrightarrow{p_{\Gamma}}^B $ to the sum of $ \overrightarrow{p_{\Gamma}}^B $ and the transverse momenta of all additional tracks contained within a cone of size $\Delta R = \sqrt{(\Delta \phi)^2 + (\Delta \eta)^2} = 0.7$ around the <i>B</i> direction. Only tracks matched to the same PV as the <i>B</i> candidate are included in the sum.
DOCA _{xtrk}	DOCA of the closest additional track to the decay vertex of the B candidate. Only tracks matched to the same PV as the B candidate are considered.
$N_{\mathrm{xtrk}}^{\mathrm{close}}$	Number of additional tracks compatible with the decay vertex (DV) of the <i>B</i> candidate with $\ln(\chi^2_{\text{xtrk,DV}}) < 1$. Only tracks matched to the same PV as the <i>B</i> candidate are considered.
$\chi^2_{\mu,\mathrm{xPV}}$	Minimum χ^2 for the compatibility of a muon in the <i>B</i> candidate with any PV reconstructed in the event.

BDT Outputs

Mass Fits

$B_s \rightarrow \mu^+ \mu^-$ Lifetime

Background Lifetime Fits

Events / ps

30

Reference Channel Mass Fit

Lifetime Fit Bias

