

The 12th Large Hadron Collider Physics **Annual Conference** June 3-7, 2024 @ Northeastern University http://lhcp2024.cos.northeastern.edu

Heavy flavor spectroscopy studies at LHCb

Paolo Gandini

INFN - Sezione di Milano

On behalf of the LHCb collaboration

Outline

- Shopping list of most recent results, no time to cover all results appeared so far after winter conferences
- Overlap with plenary talk about hadron interaction, here maybe cover more details
- Analyses use different approaches for spectroscopy investigations

The LHCb detector

Ingredients for good spectroscopy measurements

- Excellent tracking → mass and lifetime resolutions
- **Particle Identification** \rightarrow important when dealing with charged hadrons in final states
- **Trigger efficiency** → use of muons & topological trigger give excellent efficiency

LHCb Detector Performance

Int. J. Mod. Phys. A 30 (2015) 1530022

Spectroscopy in brief...

Searches for many states with different nature \rightarrow conventional hadrons & exotics

New hadrons at LHC

- It's usual practice in this type of talks to show a summary of LHC new states found
- In 2024, no new hadrons yet!
- But summer conferences have just started...
- And Run3 data taking is in full steam...

LHCb collaboration, P. Koppenburg, List of hadrons observed at the LHC, <u>LHCb-FIGURE-2021-001</u>, 2021, and <u>2023 updates</u>.

LHCP2024 – 3rd June 2024 – Boston, USA

New hadrons at LHC

LHCb collaboration, P. Koppenburg, List of hadrons observed at the LHC, <u>LHCb-FIGURE-2021-001</u>, 2021, and <u>2023 updates</u>.

Paolo Gandini

LHCP2024 - 3rd June 2024 - Boston, USA

Observation of $\Lambda_b^0 \rightarrow D^+ D^- \Lambda$

- Let's start with Dalitz analysis of a baryon
- First observation: significance of 16 σ . Use B^o \rightarrow D⁺D⁻K_s as a reference channel

NEW

• $D^+\Lambda$ and D^+D^- invariant-mass distributions \rightarrow rich presence of intermediate resonances

LHCP2024 – 3rd June 2024 – Boston, USA

Observation of new charmonium(-like) states in $B^+ \rightarrow D^{*\pm}D^{\mp}K^+$

```
B^+ \to D^{*+}D^-K^+ \qquad B^+ \to D^{*-}D^+K^+
```


NEW

- A simultaneous amplitude fit performed to two channels
- Include contributions from resonances decaying to D*-D+ and D*+D- (states linked by C parity)
- Determine the C parity of any new states

Observation of new charmonium(-like) states in $B^+ \rightarrow D^{*+}D^{+}K^+$

Preliminary PAPER-2023-047to be submitted to arXiv NEW

 $\eta_c(3945), h_c(4000), \chi_{c1}(4010) \text{ and } h_c(4300)$ J^{PC} equal to $0^{-+}, 1^{+-}, 1^{++} \text{ and } 1^{+-}$

Figure 3: Difference between the $M(D^*D)$ distributions of the two channels $(B^+ \to D^{*+}D^-K^+$ and $B^+ \to D^{*-}D^+K^+)$. Only interference between states with the same J^P but different *C*-parities, and reflections from $T^*_{\bar{cs}0,1}(2900)^0$ resonances, have significant contributions. The reference fit where $h_c(4000)$, $\chi_{c1}(4010)$ and $h_c(4300)$ are not included is shown as green dashed line.

- Four charmonium(-like) states are observed: at least 3 are new
- Existence of 2 tetraquark resonances in D^-K^+ confirmed (different channel, already observed $B^+ \rightarrow D^+D^-K^+$)

Observation of exotic J/ $\psi \Phi$ resonances in CEP

- Central Exclusive Production can be done at LHCb \rightarrow What do we look for?
- $pp \rightarrow p + X + p$ (rapidity gaps and protons intact)
- Colourless objects in QCD, Very low PT objects, Clean experimental environment
- Rich Physics: Photon-Pomeron, Double-Pomeron, Photoproduction, Glueballs, Exotica

NEW

Preliminary

PAPER-2023-043 in preparation

Observation of exotic J/ $\psi \Phi$ resonances in CEP

First exotic measurement in CEP

Modification of $\chi c1(3872)$ and $\psi(2S)$ production in *p*Pb collisions at $\sqrt{s_{NN}}$ =8.16 TeV

- First measurement of the production of the exotic hadron $\chi_{c1}(3872)$ in pPb collisions
- Comparison with the charmonium state $\psi(2S)$
- The exotic $\chi c_1(3872)$ experiences different dynamics in the nuclear medium than conventional hadrons
- Comparison with data from pp collisions \rightarrow rhe presence of the nucleus may modify $\chi c1(3872)$ production rates

arXiv:2402.14975

submitted to PRL

Conclusions

- This was a very short talk contains only the very latest LHCb results
- All results are using Run1-Run2 datasets but now collecting datasets for Run3
- Expect high statistics and unprecedented number of heavy hadron produced
- Full software trigger will increase efficiency (and discovery potential!)

Backup Slides

The LHCb detector

- LHCb designed as forward spectrometer covering the pseudo rapidity range 2< η <5
- The LHCb experiment is an extraordinary spectroscopy gym both for "conventional" and "exotic" states
- At LHC *b* and *c* baryons are produced in unprecedented quantities (high cross sections & luminosity)
- Perfect conditions for both precision measurements & observations of new states
- Drawbacks: reconstructing neutrals is experimentally challenging (but doable)

LHCb Detector Performance

Int. J. Mod. Phys. A 30 (2015) 1530022

AI fun

And using Midjourney More oneiric... less inclusive

Images generated by DALL-E artificial intelligence

$\chi_{c1}(3872)$ in hadronic collisions

