A MODEL OF PENTAQUARKS

AD POLOSA, SAPIENZA UNIVERSITY OF ROME

e-Print: 2403.04068 [hep-ph] with D. Germani and F. Niliani

Current Experimental Situation

State	Mass $[\mathrm{MeV}]$	Width $[\mathrm{MeV}]$	Observed Process	Year
$P_{c}(4312)$	$4311.9 \pm 0.7_{-0.6}^{+6.8}$	$9.8 \pm 2.7_{-4.5}^{+3.7}$	$\Lambda_{b}^{0} \rightarrow(J / \psi p) K^{-}$	2019
$\widetilde{P}_{c}(4337)$	4337_{-4}^{+7+2}	$29_{-12}^{+26+14}+B_{-14}^{+8} \rightarrow(J / \psi p) \bar{p}$	2022	
$P_{c}(4440)$	$4440.3 \pm 1.3_{-4.7}^{+4.1}$	$20.6 \pm 4.9_{-10.1}^{+8.7}$	$\Lambda_{b}^{0} \rightarrow(J / \psi p) K^{-}$	2019
$P_{c}(4457)$	$4457.3 \pm 0.6_{-1.7}^{+4.1}$	$6.4 \pm 2.0_{-1.9}^{+5.7}$	$\Lambda_{b}^{0} \rightarrow(J / \psi p) K^{-}$	2019
$\widetilde{P}_{c s}(4338)^{\frac{1}{2}}$	$4338.2 \pm 0.7 \pm 0.4$	$7.0 \pm 1.2 \pm 1.3$	$B^{-} \rightarrow(J / \psi \Lambda) \bar{p}$	2022
$P_{c s}(4459)$	$4458.9 \pm 2.9_{-1.1}^{+4.7}$	$17.3 \pm 6.5_{-5.7}^{8.0}$	$\Xi_{b}^{-} \rightarrow(J / \psi \Lambda) K^{-}$	2021

R. Aaii et al. arXiv:1904.03947 [hep-ex] (2019). R. Aaii et al. arXiv:2012.10380v2 [hep-ex] (2021). R. Aaii et al. arXiv:2210.10346 [hep-ex] (2021). R. Aaii et

K^{-}and \bar{p} associated production

- We divide the spectrum
$P_{c}^{+}[c \bar{c} u u d]$ according to strangeness content.
- Data suggests two different type of production: in association with a κ^{-}or with an \bar{p}.

$P_{c s}^{0}[c \bar{c} u d s]$
- Pentaquark seems to appear in triplet

Can we build a model to account for these
 properties?

BARYO-CHARMONIUM

Require Fermi Statistics for the three identical light quarks.
The energy values of these three quarks depend on their total spin: this is exchange interaction (not there for spins higher than 1/2).

Under exchange the spin wf $\boldsymbol{\psi}_{\text {spin }}$ of two particles gets $(-1)^{2 s+S}$.
Statistics requires $\Psi\left(=\psi_{\text {spin }} \psi_{\text {coord }}\right)$ to get $(-1)^{2 s}$ so that
$\psi_{\text {coord. }} \sim(-1)^{S} \Rightarrow L$ is even(odd) if S is even(odd).

If we include color-flavor: $\Psi=\psi_{\text {col-flav }} \psi_{\text {spin }} \psi_{\text {coord }}$

Ψ	$\Psi_{\text {col-flav }}$	$\Psi_{\text {coord }}$	$\psi_{\text {spin }}$
A	S	S	A
A	S	A	S
A	A	A	A
A	A	S	S

On the use of Fermi statistics for pentaquarks see
L. Maiani, ADP, V. Riquer Eur. Phys. J. C83 (2023) 5, 378

EXCHANGE INTERACTION

$$
\begin{gathered}
\psi_{\text {coord }}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)=\frac{1}{\sqrt{2}}\left(\phi_{1}\left(\mathbf{r}_{1}\right) \phi_{2}\left(\mathbf{r}_{2}\right) \pm \phi_{1}\left(\mathbf{r}_{2}\right) \phi_{2}\left(\mathbf{r}_{1}\right)\right) \\
\langle U\rangle_{\psi_{\text {coosd }}}=\int \psi_{\text {coord }}^{* *}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right) U\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right) \psi_{\text {coord }}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right) d^{3} r_{1} d^{3} r_{2} \\
\langle U\rangle_{\psi_{\text {coosd }}}=C \pm J \\
\text { Color-flavor symmetric case: }
\end{gathered}
$$

Symmetric in coordinates i.e. $+\Rightarrow S=0$ in a pair of fermions ($S=0,1$)
$\Rightarrow S(S+1)-1=-1 \Rightarrow$

$$
+J=\langle V\rangle_{\psi_{\text {spin }}}=\langle-\sum_{\text {pairs }} J_{a b} \underbrace{\left.\left(\frac{1}{2}+2 \mathbf{S}_{a} \cdot \mathbf{S}_{b}\right)\right\rangle}_{S(S+1)-1}
$$

EXCHANGE INTERACTION

Coordinates anti-symm. i.e. $-\Rightarrow S=1$ in a pair of fermions ($S=0,1$) $\Rightarrow S(S+1)-1=+1 \Rightarrow$

$$
\begin{gathered}
-J=\langle V\rangle_{\psi_{\text {sin }}}=\langle-\sum_{\text {pairs }} J_{a b} \underbrace{\left(\frac{1}{2}+2 \mathbf{S}_{a} \cdot \mathbf{S}_{b}\right)}_{S(S+1)-1}\rangle \\
J_{a b}=\int\left(\phi_{a}\left(\mathbf{r}_{a}\right) \phi_{b}\left(\mathbf{r}_{b}\right)\right)^{*} U\left(\mathbf{r}_{a}-\mathbf{r}_{b}\right)\left(\phi_{a}\left(\mathbf{r}_{b}\right) \phi_{b}\left(\mathbf{r}_{a}\right)\right) d^{3} r_{a} d^{3} r_{b}
\end{gathered}
$$

Determine the exchange splitting of the energy levels of a system of three quarks (treating the interaction as a perturbation)

$$
\begin{gathered}
\Delta E_{1 / 2}= \pm \sqrt{J_{12}^{2}+J_{13}^{2}+J_{23}^{2}-J_{12} J_{13}-J_{12} J_{23}-J_{13} J_{23}} \\
\Delta E_{3 / 2}=-J_{12}-J_{13}-J_{23}
\end{gathered}
$$

COLOR-FLAVOR

In the case the color-flavor is anti-symmetric, change the sign in the definition of the exchange potential V.

Let a, b, c be flavor indices and α, β, γ color indices. Requiring both color and flavor to be in the adjoint representation we can form the tensor

$$
A_{\alpha \beta \gamma}^{a b c}=\psi_{\alpha}^{[a} \psi_{\beta}^{b]} \psi_{\gamma}^{c}-\psi_{\beta}^{[a} \psi_{\gamma}^{b]} \psi_{\alpha}^{c}=\psi_{(\alpha}^{a} \psi_{\beta)}^{b} \psi_{\gamma}^{c}-\psi_{(\beta}^{a} \psi_{\gamma)}^{b} \psi_{\alpha}^{c}
$$

anti-symmetric under the exchange of any two quarks provided that

$$
\psi_{\alpha}^{a} \psi_{\beta}^{b}=-\psi_{\beta}^{b} \psi_{\alpha}^{a}
$$

COLOR-FLAVOR

Similarly we can form the symmetric color-flavor tensor

$$
S_{\alpha \beta \gamma}^{a b c}=\eta_{\alpha}^{[a} \eta_{\beta}^{b]} \eta_{\gamma}^{c}-\eta_{\beta}^{[a} \eta_{\gamma}^{b]} \eta_{\alpha}^{c}=\eta_{[\alpha}^{a} \eta_{\beta]}^{b} \eta_{\gamma}^{c}-\eta_{[\beta}^{a} \eta_{\gamma]}^{b} \eta_{\alpha}^{c}
$$

This is symmetric under the exchange of any two quarks, provided that

$$
\eta_{\alpha}^{a} \eta_{\beta}^{b}=+\eta_{\beta}^{b} \eta_{\alpha}^{a}
$$

This allows to make the baryon octet: assume that tensor \boldsymbol{S} represents the flavor octet with spin indices α, β, γ. Assign additional color indices and anti-symmetrize in color

$$
\eta_{\alpha}^{a i} \eta_{\beta}^{b j}=\eta_{\beta}^{b i} \eta_{\alpha}^{a j}=-\eta_{\beta}^{b j} \eta_{\alpha}^{a i}
$$

so that we can use $\boldsymbol{\eta} \rightarrow \boldsymbol{\psi}$. Spin-flavor (S) color (A)

$$
\mathcal{S}_{\alpha \beta \gamma}^{a b c}=\epsilon_{i j k}\left(\psi_{[\alpha}^{a i} \psi_{\beta]}^{b j} \psi_{\gamma}^{c k}+\psi_{[\gamma}^{a i} \psi_{\beta]}^{b j} \psi_{\alpha}^{c k}\right)=B_{\alpha \gamma \beta}^{a c b}
$$

$$
\begin{aligned}
& \text { We assign } \\
& S_{\alpha \beta \gamma}^{a b c} \longrightarrow P
\end{aligned}
$$

for $(J / \psi p)$ or $(J / \psi \Lambda)$ pentaquarks produced in association with a kaon K^{-}and

$$
A_{\alpha \beta \gamma}^{a b c} \longrightarrow \widetilde{P}
$$

$(J / \psi p)$ or $(J / \psi \Lambda)$ pentaquarks produced in association with an anti-proton $\bar{p}_{\text {; }}$ in this case change the sign in the definition of the exchange potential V.

P PENTAQUARKS OF THE $(J / \psi p)$ KIND

Let us consider the case $\boldsymbol{q q q}=\boldsymbol{u u d}$ in the color-flavor configuration \boldsymbol{S}.

$$
S_{\alpha \beta \gamma}^{121}=u_{[\alpha} d_{\beta]} u_{\gamma}+u_{[\gamma} d_{\beta]} u_{\alpha}
$$

since the $\boldsymbol{u} \boldsymbol{u}$ cannot be anti-symmetric in flavor space.
The pentaquark contains the light quarks u_{α}, d_{β} and u_{γ} with the \boldsymbol{u} quarks, $\boldsymbol{u}_{\boldsymbol{\alpha}}$ and $\boldsymbol{u}_{\boldsymbol{\gamma}^{\prime}}$ in a color symmetric (repulsive) representation and $\boldsymbol{u d}$ in color attractive, anti-symmetric pairings.
Therefore we require

$$
\begin{gathered}
J_{S}^{u u}=-\frac{1}{2} J_{A}^{u d} \quad\left(C_{6}-2 C_{3}\right)=-1 / 2\left(C_{3}-2 C_{3}\right) \\
J_{12}=J_{S}^{u u}>0 \quad J_{13}=J_{23}=J_{A}^{u d}<0
\end{gathered}
$$

P PENTAQUARKS OF THE $(J / \psi p)$ KIND

Assume that the ordering in mass corresponds to the lower one being spin $1 / 2$ and the higher two being $3 / 2$ and $1 / 2$ respectively. Then we have to solve the simultaneous equations

$$
\begin{gathered}
M_{P_{c}}(4457)-M_{P_{c}}(4312)=2\left|J_{S}^{u u}-J_{A}^{u d}\right| \\
M_{P_{c}}(4440)-\frac{1}{2}\left(M_{P_{c}}(4312)+M_{P_{c}}(4457)\right)=-J_{S}^{u u}-2 J_{A}^{u d} \\
\text { A solution can be found } \\
J_{S}^{u u}=29.9_{-2.8}^{+2.5} \mathrm{MeV} \quad J_{A}^{u d}=-42.8_{-1.6}^{+2.4} \mathrm{MeV} \\
\frac{J_{S}^{u u}}{J_{A}^{u d}}=-0.7 \pm 0.1
\end{gathered}
$$

P PENTAQUARKS OF THE $(J / \psi \Lambda)$ KIND

Using the same methods we can study the strange pentaquarks.
One has been observed and two more are predicted.

\widetilde{P} PENTAQUARKS OF THE $(J / \psi \Lambda, p)$ KIND

Assuming that the color-flavor of the spectator $u \boldsymbol{d}$ pair is kept in the final state, the process $\Lambda_{b}^{0} \rightarrow \tilde{P}_{c} K^{-}$is expected to be suppressed, as suggested by observation: the $[u d]_{0}$ in Λ is in a CF-symmetric configuration as opposite to \tilde{P} as described by

$$
A_{\alpha \beta \gamma}^{u d u}=u_{(\alpha} d_{\beta)} u_{\gamma}-u_{(\gamma} d_{\beta)} u_{\alpha}
$$

P AND \widetilde{P} PENTAQUARKS \& CONCLUSIONS

The spin ordering $(1 / 2,3 / 2,1 / 2)$ is a main prediction.

	Mass [MeV]		Mass [MeV]
$P_{c}(4312)$	$\left(4311.9_{-0.9}^{+7}\right)$	$P_{c s}(4459)$	$\left(4458.8_{-3.1}^{+6}\right)$
$P_{c}(4440)$	$\left(4440.0_{-5}^{+4}\right)$	$\mathbf{P}_{c s}^{\prime}$	4541 ± 6
$P_{c}(4457)$	$\left(4457.3_{-1.8}^{+7}\right)$	$\mathbf{P}_{c s}^{\prime \prime}$	4565 ± 6
$\widetilde{\mathbf{P}}_{\mathbf{c}}^{\prime \prime}$	4187 ± 7	$\widetilde{P}_{c s}(4338)$	(4338.2 ± 0.8)
$\widetilde{\mathbf{P}}_{\mathbf{c}}^{\prime}$	4276 ± 12	$\widetilde{\mathbf{P}}_{\mathbf{c s}}^{\prime}$	4387 ± 4
$\widetilde{P}_{c}(4337)$	$4332 \pm 7\left(4337_{-4}^{+7}+2\right)$	$\widetilde{\mathbf{P}}_{\mathbf{c s}}^{\prime \prime}$	4435 ± 4

