Annual Conterence Muta Additionation of the bost of t

S. Dawson, BNL LHCP Conference, Northeastern University June 4, 2024

Where are we?

- What are the big questions of particle physics?
- What do we expect to learn before the next collider?
- Some possible futures

New physics is probably at the >1 TeV Scale

or.... It could be very weakly coupled.....

The exciting physics at an e⁺e⁻ collider is likely to be precision physics

З

Many proposals for e⁺e⁻ Colliders

FCC-ee, CERN $\sqrt{s} = M_Z \rightarrow 2M_W \rightarrow 240 \ GeV \rightarrow 2M_t$

CEPC, China $\sqrt{s} = M_Z \rightarrow 2M_W \rightarrow 240 \; GeV$

 $\sqrt{s} = 250~GeV \rightarrow 500~GeV \rightarrow 1~TeV$

 $\sqrt{s} = 380~GeV \rightarrow 1.5~TeV \rightarrow 3~TeV$

The SM works at the Quantum Level

Precision masses point to the fate of the Universe

<u>1307.3536</u>

Why new physics? We've all seen the list

What is dark matter? What is dark energy?	Why is the top quark so much heavier than the W boson?	Why is the weak force so much weaker than the strong force?
Where does CP violation come from?	What is the source of the matter- antimatter asymmetry in the universe?	What is the shape of the Higgs potential?
	What about poutring	

What about neutrino masses?

Together, the LHC and future colliders can yield new insights

I will focus on e⁺e⁻ colliders

We have the SM, but...

The SM doesn't answer any of these questions

New physics is needed, but we don't know where

The Higgs is central to our understanding

HL-LHC and future colliders are complementary probes of these questions

e⁺e⁻ colliders are Higgs factories

We already know a lot about the Higgs

- The Higgs couplings are close to SM predictions
- High Luminosity LHC will push Higgs coupling limits to 2-4%, restricting many possibilities for new physics

Target for e⁺e⁻ collider Higgs precision must be O(1%)

<u>2203.13923</u>

Precision Measurements of Higgs Couplings

- Is there a target precision?
- Compute deviations in Standard Model Effective Field Theory (SMEFT)
- Consistent expansion that can be systematically improved
- Power is that Higgs couplings are related to other processes (WW production, top quark production, Z pole measurements)
- · Generically, deviations from SM are of

 $\mathcal{O}\left(\frac{v^2}{\Lambda^2}\right) \sim 1.6\% \left(\frac{2 \ TeV}{\Lambda}\right)^2$

• VERY MODEL DEPENDENT!!! (and a moving target....)

Model independent Higgs measurements

- Model independent Higgs couplings and Higgs width at e⁺e⁻ colliders
- Total Higgs width is window into light new physics. Perhaps H-> dark matter?

- Measure recoil mass from $Z \rightarrow I^+I^-$ to get σ_{ZH} and absolute measurement of g_{HZZ}
- Exclusive Higgs decays to xx give g_{Hxx}

$$\sigma_{HZ} \frac{\Gamma(H \to ZZ)}{\Gamma_H} \sim \frac{g_{HZZ}^4}{\Gamma_H}$$

*For the purists among you, all of this can be done in a SMEFT framework

Significant advances in precision

Why do we care about Higgs couplings?

- We know almost nothing about the Higgs potential!
- Higgs potential has 2 free parameters, μ^2, λ

 $V=-\mu^2\Phi^\dagger\Phi+\lambda(\Phi^\dagger\Phi)^2$

• Trade μ^2 , λ for v=246 GeV, M_H² $V \rightarrow \frac{M_H^2}{2}H^2 + \lambda_3 v H^3 + \lambda_4 H^4$

$$\lambda_3 = \frac{M_H^2}{2v^2}$$

- + λ_{3} and λ_{4} NOT FREE PARAMETERS
- Can we measure these couplings at a future collider?

Does EWSB really work like this??

Quantum corrections as tool for discovery

- Contributions from operators that first arise at one-loop give window to multiple new interactions beyond tree level fits
- Current LHC indirect sensitivity compatible with direct measurement from HH production at LHC

Correlations: Tri-linear HHH vs modifications to ZHH coupling

• There are many correlated effects and cancellations

In any given BSM scenario, it is likely that there is more new physics than just modification of Higgs potential

1711.03978

$e^+e^- \rightarrow ZH$ is window to many new interactions

- Complete 1-loop SMEFT calculation of $e^+e^- \to ZH$
- Sensitivity to many possible operators that do not contribute at tree level
- How do future constraints compare with existing information?

Top Yukawa

There is sensitivity to much new physics beyond HHH coupling

- Higgstrahlung at e⁺e⁻ colliders is sensitive to many new interactions that are not well understood at the present time
- CP violation in the gauge sector
- At tree level, CP violating dimension-6 operators do not interfere with SM contribution from $e^+e^- \rightarrow ZH$
- At one-loop, there are further contributions from imaginary part of loop integrals

$$\begin{split} O_{\tilde{W}} = & \epsilon_{abc} \tilde{W}^{a\nu}_{\mu} W^{b\rho}_{\nu} W^{c,\mu}_{\rho} \\ O_{\phi \tilde{W}} = & \tilde{W}^a_{\mu\nu} W^{\mu\nu b} (\phi^{\dagger} \phi) \\ O_{\phi \tilde{B}} = & \tilde{B}_{\mu\nu} B^{\mu\nu} (\phi^{\dagger} \phi) \\ O_{\phi \tilde{W}B} = & \tilde{W}^a_{\mu\nu} B^{\mu\nu} (\phi^{\dagger} \sigma^a \phi) \end{split}$$

CP violation at future e⁺e⁻ colliders

- CP violation in the gauge sector is strongly limited by eEDMs
 - eEDM depends on multiple parameters
- Also limits from angular observables at LHC from H-> 4 lepton
- e⁺e⁻ helps to further understand CP violation in the gauge sector

eEDM, LHC, e+e⁻ probes of CP violation are complementary

Asteriadis, Dawson, Giardino, and Szafron, arXiv:2024xxxx

More Scalars?

- More scalars can help stabilize the Higgs potential
- More scalars can help to understand fermion masses
- Attractive scenario has dark matter connecting to the SM through a scalar portal
- More scalars can provide a strong first order EW phase transition and provide new sources of CP violation
- Future colliders sensitively probe these scenarios

Scalar Singlet extensions

- Many variations: Z₂ symmetry, no Z₂ symmetry, complex singlet
- Complementarity between direct searches and precision Higgs measurements
- Information about EW phase transition in non-Z₂ symmetric example

Conclusions

Much more physics than discussed here!!!!

- e⁺e⁻ colliders are discovery machines
 - Precision Higgs measurements beyond HL-LHC
 - Test quantum consistency of SM through precision Z pole measurements
 - Probe Z boson exotic decays (dark sector)
 - Is the Higgs boson composite?

•

- Probe models explaining stability of the universe
- Further our understanding of EWSB
- Look for axion-like particles in new regimes
- Look for feebly interacting/long-lived particles

Z/Higgs/top factory in clean environment

Theory effort needed to match experimental projections