Physics analyses review for future Higgs factories

Loukas Gouskos (Brown University)

LCHP 2024 @Boston
Introduction

BSM O(1TeV): Impact on H-couplings

<table>
<thead>
<tr>
<th>Model</th>
<th>$b\bar{b}$</th>
<th>$c\bar{c}$</th>
<th>gg</th>
<th>WW</th>
<th>$\tau\tau$</th>
<th>ZZ</th>
<th>$\gamma\gamma$</th>
<th>$\mu\mu$</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSSM [40]</td>
<td>+4.8</td>
<td>-0.8</td>
<td>-0.8</td>
<td>-0.2</td>
<td>+0.4</td>
<td>-0.5</td>
<td>+0.1</td>
<td>+0.3</td>
</tr>
<tr>
<td>Type II 2HD [42]</td>
<td>+10.1</td>
<td>-0.2</td>
<td>-0.2</td>
<td>0.0</td>
<td>+9.8</td>
<td>0.0</td>
<td>+0.1</td>
<td>+9.8</td>
</tr>
<tr>
<td>Type X 2HD [42]</td>
<td>-0.2</td>
<td>-0.2</td>
<td>-0.2</td>
<td>0.0</td>
<td>+7.8</td>
<td>0.0</td>
<td>0.0</td>
<td>+7.8</td>
</tr>
<tr>
<td>Type Y 2HD [42]</td>
<td>+10.1</td>
<td>-0.2</td>
<td>-0.2</td>
<td>0.0</td>
<td>-0.2</td>
<td>0.0</td>
<td>0.1</td>
<td>-0.2</td>
</tr>
<tr>
<td>Composite Higgs [44]</td>
<td>-6.4</td>
<td>-6.4</td>
<td>-6.4</td>
<td>-2.1</td>
<td>-6.4</td>
<td>-2.1</td>
<td>-2.1</td>
<td>-6.4</td>
</tr>
<tr>
<td>Little Higgs w. T-parity [45]</td>
<td>0.0</td>
<td>0.0</td>
<td>-6.1</td>
<td>-2.5</td>
<td>0.0</td>
<td>-2.5</td>
<td>-1.5</td>
<td>0.0</td>
</tr>
<tr>
<td>Little Higgs w. T-parity [46]</td>
<td>-7.8</td>
<td>-4.6</td>
<td>-3.5</td>
<td>-1.5</td>
<td>-7.8</td>
<td>-1.5</td>
<td>-1.0</td>
<td>-7.8</td>
</tr>
<tr>
<td>Higgs-Radion [47]</td>
<td>-1.5</td>
<td>-1.5</td>
<td>+10.</td>
<td>-1.5</td>
<td>-1.5</td>
<td>-1.5</td>
<td>-1.0</td>
<td>-1.5</td>
</tr>
<tr>
<td>Higgs Singlet [48]</td>
<td>-3.5</td>
<td>-3.5</td>
<td>-3.5</td>
<td>-3.5</td>
<td>-3.5</td>
<td>-3.5</td>
<td>-3.5</td>
<td>-3.5</td>
</tr>
</tbody>
</table>

$\frac{v^2}{\Lambda^2} \sim \frac{6\%}{\Lambda^2 (\text{TeV})}$

e.g. $\Lambda=1$ (5) TeV \rightarrow 5 (0.1)%
Introduction

BSM O(1TeV): Impact on H-couplings

<table>
<thead>
<tr>
<th>Model</th>
<th>$b\bar{b}$</th>
<th>$c\bar{c}$</th>
<th>gg</th>
<th>WW</th>
<th>$\tau\tau$</th>
<th>ZZ</th>
<th>$\gamma\gamma$</th>
<th>$\mu\mu$</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSSM [40]</td>
<td>+4.8</td>
<td>-0.8</td>
<td>-0.8</td>
<td>-0.2</td>
<td>+0.4</td>
<td>-0.5</td>
<td>+0.1</td>
<td>+0.3</td>
</tr>
<tr>
<td>Type II 2HD [42]</td>
<td>+10.1</td>
<td>-0.2</td>
<td>-0.2</td>
<td>0.0</td>
<td>+9.8</td>
<td>0.0</td>
<td>+0.1</td>
<td>+9.8</td>
</tr>
<tr>
<td>Type X 2HD [42]</td>
<td>-0.2</td>
<td>-0.2</td>
<td>-0.2</td>
<td>0.0</td>
<td>+7.8</td>
<td>0.0</td>
<td>0.0</td>
<td>+7.8</td>
</tr>
<tr>
<td>Type Y 2HD [42]</td>
<td>+10.1</td>
<td>-0.2</td>
<td>-0.2</td>
<td>0.0</td>
<td>-0.2</td>
<td>0.0</td>
<td>0.1</td>
<td>-0.2</td>
</tr>
<tr>
<td>Composite Higgs [44]</td>
<td>-6.4</td>
<td>-6.4</td>
<td>-6.4</td>
<td>-2.1</td>
<td>-6.4</td>
<td>-2.1</td>
<td>-2.1</td>
<td>-6.4</td>
</tr>
<tr>
<td>Little Higgs w. T-parity [45]</td>
<td>0.0</td>
<td>0.0</td>
<td>-6.1</td>
<td>-2.5</td>
<td>0.0</td>
<td>-2.5</td>
<td>-1.5</td>
<td>0.0</td>
</tr>
<tr>
<td>Little Higgs w. T-parity [46]</td>
<td>-7.8</td>
<td>-4.6</td>
<td>-3.5</td>
<td>-1.5</td>
<td>-7.8</td>
<td>-1.5</td>
<td>-1.0</td>
<td>-7.8</td>
</tr>
<tr>
<td>Higgs-Radion [47]</td>
<td>-1.5</td>
<td>-1.5</td>
<td>+10.</td>
<td>-1.5</td>
<td>-1.5</td>
<td>-1.5</td>
<td>-1.0</td>
<td>-1.5</td>
</tr>
<tr>
<td>Higgs Singlet [48]</td>
<td>-3.5</td>
<td>-3.5</td>
<td>-3.5</td>
<td>-3.5</td>
<td>-3.5</td>
<td>-3.5</td>
<td>-3.5</td>
<td>-3.5</td>
</tr>
</tbody>
</table>

HL-LHC:
- **Direct searches:** O(5) TeV
- **H-couplings:**
 - Bosons/ 3rd-Gen fermions @ few %
 - 2nd Gen fermions: maybe evidence of $H \rightarrow cc$
 - Self-coupling $\sim 50\%$

Future e^+e^- collider:
- Measure H-couplings at O(0.1)% level

$\frac{v^2}{\Lambda^2} \sim \frac{6\%}{\Lambda^2(\text{TeV})}$

e.g. $\Lambda=1 (5) \text{TeV} \rightarrow 5 (0.1)\%$

Details in S. Dawnson’s talk
Introduction

BSM O(1TeV): Impact on H-couplings

<table>
<thead>
<tr>
<th>Model</th>
<th>$b\bar{b}$</th>
<th>$c\bar{c}$</th>
<th>gg</th>
<th>WW</th>
<th>$\tau\tau$</th>
<th>ZZ</th>
<th>$\gamma\gamma$</th>
<th>$\mu\mu$</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSSM [40]</td>
<td>+4.8</td>
<td>-0.8</td>
<td>-0.8</td>
<td>-0.2</td>
<td>+0.4</td>
<td>-0.5</td>
<td>+0.1</td>
<td>+0.3</td>
</tr>
<tr>
<td>Type I 2HDM [42]</td>
<td>+10.1</td>
<td>-0.2</td>
<td>-0.2</td>
<td>0.0</td>
<td>-0.4</td>
<td>-0.1</td>
<td>-0.1</td>
<td>+0.1</td>
</tr>
<tr>
<td>Ty. Type-I 2HDM [42]</td>
<td>+10.1</td>
<td>-0.2</td>
<td>-0.2</td>
<td>0.0</td>
<td>-0.4</td>
<td>-0.1</td>
<td>-0.1</td>
<td>+0.1</td>
</tr>
<tr>
<td>Composite Higgs [44]</td>
<td>-5.2</td>
<td>-0.2</td>
<td>-0.2</td>
<td>0.0</td>
<td>-0.4</td>
<td>-0.4</td>
<td>-0.4</td>
<td>-0.4</td>
</tr>
<tr>
<td>Little Higgs w. T-parity [45]</td>
<td>0.0</td>
<td>0.0</td>
<td>-6.1</td>
<td>-2.5</td>
<td>0.0</td>
<td>-2.5</td>
<td>-1.5</td>
<td>0.0</td>
</tr>
<tr>
<td>Little Higgs w. T-parity [46]</td>
<td>-7.8</td>
<td>-4.6</td>
<td>-3.5</td>
<td>-1.5</td>
<td>-7.8</td>
<td>-1.5</td>
<td>-1.0</td>
<td>-7.8</td>
</tr>
<tr>
<td>Higgs-Radion [47]</td>
<td>-1.5</td>
<td>-1.5</td>
<td>+10.1</td>
<td>-1.5</td>
<td>-1.5</td>
<td>-1.5</td>
<td>-1.0</td>
<td>-1.5</td>
</tr>
<tr>
<td>Higgs Singlet [48]</td>
<td>-3.5</td>
<td>-3.5</td>
<td>-3.5</td>
<td>-3.5</td>
<td>-3.5</td>
<td>-3.5</td>
<td>-3.5</td>
<td>-3.5</td>
</tr>
</tbody>
</table>

Today: Focus on Higgs physics [just a subset] - e^+e^-: physics program extends well beyond Higgs

HL-LHC:
- Direct searches: O(5) TeV
- H-couplings:
 - 2nd Gen fermions: maybe evidence of $H \to cc$
 - Self-coupling~50%

Future e^+e^- collider:
- Measure H-couplings at O(0.1)% level

Details in S. Dawson’s talk

$$\frac{\nu^2}{\Lambda^2} \sim 6\% \quad \frac{\Lambda^2}{\Lambda^2(\text{TeV})}$$
e.g. $\Lambda=1$ (5)TeV \rightarrow 5 (0.1)%
Proposed future accelerators

Linear (e^+e^-) colliders

Circular (e^+e^-/hh) colliders
Proposed future accelerators

Linear (e^+e^-) colliders
- CLIC (CERN)
 - Normal-conducting acceleration
 - Up to 3 TeV collisions

Circular (e^+e^-/hh) colliders
- FCC-ee/-hh (CERN)
 - 100 Km tunnel
 - First: FCC-ee; up to 2*m_{top} collisions "standard" technology
 - Then: FCC-hh; 100 TeV collisions
 - challenge: 16T magnets

- ILC (Japan)
 - Super-conducting acceleration
 - 250 & 500 [1000?] GeV collisions

- CEPC/SppC (China)
 - 100 Km tunnel
 - Essentially an FCC-ee/ FCC-hh
 - More conservative lumi scenarios

- C^3 (SLAC)
 - Conducting acceleration
 - 250 & 550 GeV collisions

Details in E. Nanni’s talk
In a nutshell

- e^+e^-: Different strategies
 - Different luminosity and E_{CM} scenarios

- FCC-ee/CEPC:
 - Study Z, W, H and top with unprecedented precision
 - e.g. 10^{12} Z, $O(1\text{M})$ H-bosons

- CLIC/ILC/C^3:
 - Rich Higgs program
 - Direct access to HH

- Ultimate goal: $O(100\text{ TeV})$ pp collider
 - FCC-hh/SppC: use same tunnel constructed for FCC-ee/CEPC
Higgs as an exploration tool
Higgs production at e^+e^-

$E_{CM} \sim (240 \text{ GeV})$: ZH production dominates

$E_{CM} > 500 \text{ GeV}$: Hvv is dominant

$E_{CM} > 500 \text{ GeV}$: Opens direct access to HH
Model-independent measurements

- **ZH production in e^+e^-**
 - Unbiased tagging of Higgs boson
 - via $Z \rightarrow LL$, m_{recoil}, E_{beam} constraints

 $$m_{\text{Recoil}}^2 = s + m_Z^2 - 2 \sqrt{s}(E_{\ell^+} + E_{\ell^-})$$

- **Strategy:**
 - **First:** measure ZH production
 - rate $\sim \kappa Z^2 \rightarrow \delta(\kappa_Z)/\kappa_Z \sim 0.1\%$
 - **Then:** measure ZH($\rightarrow ZZ$)
 - rate $\sim \kappa_Z^4/\Gamma(H) \rightarrow \delta(\Gamma(H))/\Gamma(H) \sim 1\%$

- Unique in e^+e^- machines @ZH
- “standard candle” for other Higgs measurements (incl. pp@100TeV)

O(10) improvement wrt HL-LHC
More on Higgs couplings

- Next step: Study as many as possible Higgs decays
 - **key:** identification of decay flavor

Novel Deep Learning based algorithms under development

![FCC-ee Simulation (IDEA)](image)

- $e^+e^- \rightarrow ZH, H \rightarrow jj$
- $j = u, d, s, c, b, g$

better

NB: example from FCC-ee; many other tools (e.g., 2202.03285, 2203.07535, 2310.03440)
More on Higgs couplings

- Next step: Study as many as possible Higgs decays
 - **key:** identification of decay flavor

Novel Deep Learning based algorithms under development

Signal extraction: 2D fit: m_{rec} vs. m_H

<table>
<thead>
<tr>
<th>Final state</th>
<th>$Z(ll)H(jj)$ [%]</th>
<th>$Z(vv)H(jj)$ [%]</th>
<th>$Z(jj)H(jj)$ [%]</th>
<th>Comb. [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H \to bb$</td>
<td>0.81</td>
<td>0.36</td>
<td>0.3</td>
<td>0.22</td>
</tr>
<tr>
<td>$H \to cc$</td>
<td>4.93</td>
<td>2.6</td>
<td>3.5</td>
<td>1.92</td>
</tr>
<tr>
<td>$H \to gg$</td>
<td>2.73</td>
<td>1.1</td>
<td>2.4</td>
<td>0.94</td>
</tr>
<tr>
<td>$H \to ss$</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>

NB: example from FCC-ee; many other tools (e.g., 2202.03285, 2203.07535, 2310.03440)
Towards $\mathcal{H} \rightarrow ss$

- Tiny $\text{BR} \sim 10^{-4}$: e.g., $O(100)$ expected at FCC-ee (@ZH)

Key points:
- Enhanced **Kaon** fraction; Strange tagging critical
- Need powerful identification up to $O(30-40)$ GeV
Towards $H \rightarrow ss$

- Big effort to design optimal PID detectors and algorithms to exploit their full potential [e.g., ECFA $H \rightarrow ss$ team, Wiki]

- Achieve 3σ π/K separation for up to ~ 30 GeV momenta

Details in D. Bortoletto’s talk
Towards $H \rightarrow ss$

- Big effort to design optimal PID detectors and algorithms to exploit their full potential [e.g., ECFA $H \rightarrow ss$ team, Wiki]

But:
We need to carefully access impact of detector proposals to the full Higgs [and not only] physics program in general

Achieve 3σ π/K separation for up to ~ 30 GeV momenta

Details in D. Bortoletto’s talk
Towards $H \rightarrow ss$

- Strong dependence on detector design, jet tagging, Lumi..
 - Most sensitive results currently $\sim 2\sigma$ (CEPC/FCC-ee)

Opportunity to **fully establish second generation** charged fermions!
→ Impossible at the HL-LHC/hadron colliders
Unique at Circular Colliders: $H \to ee$

- **FCC-ee/CEPC**: Resonant Higgs production
 - Tiny signal $\text{BR}(H \to ee) \sim 10^{-9}$ vs. huge BKGs
 - but: large luminosity at FCC-ee
 - $20 \text{ ab}^{-1}/\text{year/IP} \to \sim 10\text{K} \ Higgs$

- **Key points**:
 - Beam spread ($\sim \text{MeV}$) \to monochromatization
 - Precise $m_H \to$ from ZH run

2107.02686
$g, \ W, \ Z, \ ...$

- 1 year, 2 IPS: 2σ
- 3 years, 4 IPS: $\kappa_e @ 15\%$
Higgs to invisible

- Portal to Dark Matter (DM)
 - SM: $\text{BR}(H \rightarrow ZZ^* \rightarrow 4\nu) \sim 0.1\%$

Goal: Reach neutrino floor

SM $H \rightarrow \text{inv}$ reach

- Possible at the HL-LHC
- NS: $s=240$ GeV, $L=10$ ab$^{-1}$
- SM BF $H \rightarrow \text{invis.}$ = 0.106%
- $\pm 0.141\%$, $\pm 0.124\%$, $\pm 0.042\%$, $\pm 0.133\%$, $\pm 0.110\%$, $\pm 0.035\%$

5\sigma discovery potential

- NB: 5% poorer $\sigma_{E/E(\text{Had})}$
- \rightarrow 80% increase in $\delta(H \rightarrow \text{inv})$
- Keep in mind for detector design/choice
Higgs self coupling (λ) @ e^+e^-
(a) Via loops (FCC-ee/CepC)

Key points:
- Precise κ_Z measurement
- Different collision energies

Relative enhancement of ZH production

O(10-20%) precision on λ
[other couplings at SM-values]
(b) Direct access (ILC/C3/CLIC)

\[\sigma \text{ [fb]} \]

\[\sqrt{s} \text{ [GeV]} \]

H self coupling (K_{λ})

HHVV coupling (K_{2V})

$H H W^* W^*$

$H H Z Z$
(b) Direct access (ILC/C^3/CLIC)

Use m_{HH} to disentangle $\kappa_\lambda - \kappa_{2V}$
(b) Direct access (ILC/C^3/CLIC)

- **Higgs → 4b, bbWW; Z → leptonic+hadronic decays**

- **ZHH: ILC/C^3: δ(κ_λ)~20-30%; CLIC: ZHH observation ~6σ**

- **HHvv: >3σ evidence @CLIC E_{CM}=1.4 TeV**
Higgs-self coupling summary

2209.07510

<table>
<thead>
<tr>
<th>collider</th>
<th>Indirect-h</th>
<th>hh</th>
<th>combined</th>
</tr>
</thead>
<tbody>
<tr>
<td>HL-LHC [78]</td>
<td>100-200%</td>
<td>50%</td>
<td>50%</td>
</tr>
<tr>
<td>ILC$_{250}/C^3$-250</td>
<td>49%</td>
<td>-</td>
<td>49%</td>
</tr>
<tr>
<td>ILC$_{500}/C^3$-550</td>
<td>38%</td>
<td>20%</td>
<td>20%</td>
</tr>
<tr>
<td>CLIC$_{380}$ [54]</td>
<td>50%</td>
<td>-</td>
<td>50%</td>
</tr>
<tr>
<td>CLIC$_{1500}$ [54]</td>
<td>49%</td>
<td>36%</td>
<td>29%</td>
</tr>
<tr>
<td>CLIC$_{3000}$ [54]</td>
<td>49%</td>
<td>9%</td>
<td>9%</td>
</tr>
<tr>
<td>FCC-ee [55]</td>
<td>33%</td>
<td>-</td>
<td>33%</td>
</tr>
<tr>
<td>FCC-ee (4 IPs) [55]</td>
<td>24%</td>
<td>-</td>
<td>24%</td>
</tr>
<tr>
<td>FCC-hh [79]</td>
<td>-</td>
<td>3.4-7.8%</td>
<td>3.4-7.8%</td>
</tr>
<tr>
<td>μ (3 TeV) [64]</td>
<td>-</td>
<td>15-30%</td>
<td>15-30%</td>
</tr>
<tr>
<td>μ (10 TeV) [64]</td>
<td>-</td>
<td>4%</td>
<td>4%</td>
</tr>
</tbody>
</table>

e$^+e^-$ vs. HL-LHC
- O(10) improved precision on κ_Z
- Up to 2-3x improvement on κ_λ

e$^+e^-$: Potential to probe several baryogenesis models
Summary

- Unique situation: no clear direction of where to look for New Physics
 - but we have very strong reasons to believe it exists

- We need a new colliders… Which one?
 - e^+e^-: provide precision $O(10)$ times better than HL-LHC
 - particularly for challenging decay modes (e.g., charm, strange..)
 - e^+e^- program extends well beyond Higgs physics
 - Z-pole, ttbar, axions, LLPs, right-handed neutrinos,…

- Far from “over-subscribed”
 - Lot’s of room of innovation and out-of-the-box thinking in several areas
 - Detector design, event reconstruction, physics analyses, …