Future Colliders from the Accelerator Perspective

Emilio A. Nanni LHCP 2024 6/4/2024

Accelerators Drive Discovery for High Energy Physics

Experimental validation of the Standard Model of Particle Physics

What determines the performance of an accelerator? How do accelerators work across different scales in size and energy?

What's Next for the Energy Frontier?

Linear vs. Circular

Linear e⁺e⁻ colliders: ILC, C³, CLIC

- Reach higher energies (~TeV), al can use polarized beams
- Relatively low radiation
- Collisions in bunch trains

Circular e⁺e⁻ colliders: FCC-ee, CEPC

- Highest luminosity collider at Z/WW/ZH
- limited by synchrotron radiation above 350 – 400 GeV (~ γ^4 / ρ^2)
- Beam continues to circulate after collision

Higgs Factory Proposals

ILC

250/500 GeV

CEPC 240 GeV CLIC 380/1000/3000 GeV

FCC-ee 240/365 GeV COOL COPPER COLLIDER

COOL COPPER COLLIDER

250/550 GeV ... > TeV

Future Muon, Wakefield and hh Colliders

Landscape of High Energy Colliders

Snowmass Implementation Task Force comparisons of machine concepts

Future studies focusing on physics potential for operation AND construction

https://arxiv.org/pdf/2208.06030.pdf

ILC and the Accelerator Technology

P5 Town Hall at SLAC (May 3, 2023)

Parameters	Value
Beam Energy	125 + 125 GeV
Luminosity	1.35 / 2.7 x 10 ¹⁰ cm ² /s
Beam rep. rate	5 Hz
Pulse duration	0.73 / 0.961 ms
# bunch / pulse	1312 / 2625
Beam Current	5.8 / <mark>8.8</mark> mA
Beam size (y) at FF	7.7 nm
SRF Field gradient	< 31.5 > MV/m (+/-20%) Q ₀ = 1x10 ¹⁰
#SRF 9-cell cavities (CM)	~ 8,000 (~ 900)
AC-plug Power	111 / 138 MW

SRF technology for ILC-250 beyond present limits

- Advanced shape standing wave SRF cavities – Low Loss (LL), ICHIRO,
- Reentrant (RE) increase peak quench magnetic field by 10-20%, potentially bringing accelerating gradient limit to ≲ 60 MV/m
- Traveling wave (TW) SRF offers better cryogenic efficiency and higher accelerating gradient up to ~ 70 MV/m – possible application: ILC energy upgrade, HELEN collider, ACE at Fermilab
- Advanced SRF materials Nb3Sn cavities can potentially reach ~ 90 MV/m

The Compact Linear Collider (CLIC)

The CLIC accelerator studies are mature:

- · Optimised design for cost and power
- Many tests in CTF3, FELs, light-sources and test-stands
- Technical developments of "all" key elements

- **Timeline:** Electron-positron linear collider at CERN for the era beyond HL-LHC
- Compact: Novel and unique two-beam accelerating technique with highgradient room temperature RF cavities (~20'500 structures at 380 GeV), ~11km in its initial phase
- Expandable: Staged programme with collision energies from 380 GeV (Higgs/top) up to 3 TeV (Energy Frontier)
- CDR in 2012 with focus on 3 TeV. Updated project overview documents in 2018 (Project Implementation Plan) with focus 380 GeV for Higgs and top.

Recent talks (with more references): eeFACT1 and eeFACT2

On-going CLIC studies towards next ESPP update

Project Readiness Report as a step toward a TDR

Assuming ESPP in ~ 2026, Project Approval ~ 2028, Project (tunnel) construction can start in ~ 2030.

Optimizing the luminosity at 380 GeV - already implemented for Snowmass paper, further work to provide margins will continue.

Luminosity margins and increases:

- Initial estimates of static and dynamic degradations from damping ring to IP gave: 1.5 x 10³⁴ cm⁻² s⁻¹
- Simulations taking into accord static and dynamic effects with corrective algorithms give 2.8 on average, and 90% of the machines above 2.3 x 10³⁴ cm⁻² s⁻¹ (this is the value currently used)

C³ Accelerator Complex

8 km footprint for 250/550 GeV CoM \Rightarrow 70/120 MeV/m Large portions of accelerator complex compatible between LC technologies

- Beam delivery / IP modified from ILC (1.5 km for 550 GeV CoM), compatible w/ ILC-like detector
- Damping rings and injectors to be optimized with CLIC as baseline

C³ Parameters

C³ Alignment and Vibrations

FCC integrated program

comprehensive long-term program maximizing physics opportunities

FUTURE

CIRCULAR COLLIDER

- stage 1: FCC-ee (Z, W, H, tt) as Higgs factory, electroweak & top factory at highest luminosities
- stage 2: FCC-hh (~100 TeV) as natural continuation at energy frontier, w pp & AA collisions; also eh option
- highly synergetic and complementary programme boosting the physics reach of both colliders (e.g. model-independent measurements of the Higgs couplings at FCC-hh thanks to input from FCC-ee; and FCC-hh as "energy upgrade" of FCC-ee)
- common civil engineering and technical infrastructures, building on and reusing CERN's existing infrastructure
- FCC integrated project allows the start of a new, major facility at CERN within a few years of the end of HL-LHC

a similar two-stage project CEPC/SPPC is under study in China

FCC-ee accelerator R&D - examples

efficient RF power sources

FPC & HOM coupler, cryomodule,

& scalable solid-state amplifiers

efficient SC cavities

Elliptical cavity (SWELL) for high beam current & for high gradient, seamless by nature - links to past work at ANL (Liu & Nassiri, PRAB 13, 012001)

Slotted Waveguide

with Nb thin films

Syratchev

energy efficient twin aperture arc dipoles

thin-film coatings

under study: CCT HTS quad's & sext's for arcs

reduce energy consumption by O(50 MW)

Stage 2: FCC-hh: highest collision energies

from LHC technology 8.3 T NbTi dipole

FUTURE

CIRCULAR

via HL-LHC technology 12 T Nb₃Sn quadrupole

order of magnitude performance increase in both energy & luminosity wrt LHC
100 TeV cm collision energy (vs 14 TeV for LHC)
20 ab⁻¹ per experiment over 25 years of operation (vs 3 ab⁻¹ for LHC)

similar performance increase as from Tevatron to LHC

key technology: high-field magnets

FNAL dipole demonstrator 4-layer cos 14.5 T Nb₃Sn in 2019

HTS technology

Hybrid

Nb-Ti/HTS

Muon Collider Concept

- Leading concept for Muon Collider is a proton driven target for muon production followed by 6D cooling to reduce the beam emittance
- Alternative concept positron driven muon production
- Challenges:
 - Muon cooling for proton driven source
 - High flux positron source

ArXiv: 1808.01858

Muon Cooling

- Technology requirements for MuC cooling:
 - Large bore solenoidal magnets: From 2 T (500 mm IR), to 14 T (50 mm IR)
 - Normal conducting rf that can provide high-gradients within a multi-T fields
 - Absorbers that can tolerate large muon intensities
 - Integration: Solenoids coupled to each other, near high power rf & absorbers)

Target Parameters for Muon Collider from Snowmass 2021

Accelerator R&D areas:

- High power proton driver
- Short lifetime of muons in injector (~microsec)
- Cooling to reduce emittance
- Injection and acceleration
- Mitigating radiation

Parameter	Symbol	Unit	Target value		
Centre-of-mass energy	$E_{\rm cm}$	${ m TeV}$	3	10	14
Luminosity	\mathcal{L}	$10^{34}{\rm cm}^{-2}{\rm s}^{-1}$	1.8	20	40
Collider circumference	C_{coll}	km	45	10	14
Muons/bunch	N	10^{12}	2.2	1.8	1.8
Repetition rate	$f_{\rm r}$	$_{\mathrm{Hz}}$	5	5	5
Beam power	$P_{\rm coll}$	MW	5.3	14.4	20
Longitudinal emittance	$\epsilon_{ m L}$	lviev m	7.5	7.5	1.5
Transverse emittance	ϵ	μm	25	25	25
IP bunch length	σ_z	mm	5	1.5	1.07
IP beta-function	β	mm	5	1.5	1.07
IP beam size	σ	μm	3	0.9	0.63

Wakefield Accelerator Technologies

Conclusions

- Accelerators are powerful tools for scientific discovery
- A great variety of parameters are achievable species, power, wavelength, repetition rate
- Technology is evolving rapidly to enable new capabilities
- Ultimately accelerator technology will set the limits of collider performance
- Exciting time with great options for the community

Questions?