14th LHCP Conference, Jun 3 – 7, 2024 Future Projects Session

The EIC: Theoretical Motivations and Experimental Challenges

Maria ŻUREK, Argonne National Laboratory on behalf of the ePIC Collaboration

(Selected) Theoretical Motivations

The Physics Quest of the EIC

- How do the nucleon properties like mass and spin emerge from their partonic structure?
- How are the sea quarks and gluons, and their spins, distributed in space and momentum inside the nucleon?

The Physics Quest of the EIC

- In what manner do color-charged quarks and gluons, along with colorless jets, interact with the nuclear medium?
- What is the mechanism through which quark-gluon interactions give rise to nuclear binding?

The Physics Quest of the EIC

- What impact does a high-density nuclear environment have on the interactions, correlations, and behaviors of quarks and gluons?
- Is there a saturation point for the density of gluons in nuclei at high energies, and does this lead to the formation of gluonic matter with universal properties across all nuclei, including the proton?

Deep Inelastic Scattering

 $e + p \rightarrow e' + X$

Golden process to probe nucleons and nuclei with electron beam providing the unmatched precision of EM interactions

- Access to partonic kinematics through scattered lepton on event level
- Initial and final state effects can be cleanly disentangled

Q² - resolution power (virtuality of the photon) s - center-of-mass energy squared x - the fraction of the nucleon's momentum that the struck quark caries y - inelasticity

Probing Uncharted Territory

Center-of-mass energy √s: 29 – 140 GeV

irger

center

of

mass

energy

and luminosity

Explore QCD landscape over large range of resolution (Q²) and quark/gluon density (1/x)

Unraveling the Mystery of the Origin of the Nucleon Spin

Access to gluon spin with the measurement of the g_1 structure function

• Difference of cross-sections with **different longitudinal spin orientation** of e and proton

Access to quark contribution of OAM - through exclusive processes

M. Żurek - EIC

Unraveling the Mystery of the Origin of the Nucleon Spin

Impact of the projected EIC DIS A_{LL} pseudodata (L = 10 fb⁻¹) on the gluon helicity and quark singlet helicity

Current world data: Helicity distributions known for x > ~0.01 with good precision

Deep insight with EIC: In addition to golden channel g₁, direct access to gluons in higher-order photon-gluon fusion: dijet, heavy-quark

Spatial and Momentum Structure of Nucleons and Nuclei in 3D

→ Access to e.g., spin-orbit correlations Spin-dependent 3D momentum space images from semi-inclusive scattering

Spin-dependent 2+1D coordinate space images from exclusive scattering

Tomographic Image of Quarks and Gluons within Matter

Spatial imaging of Quarks and Gluons via exclusive reactions where the nucleon is left intact in the final state

electron V quark out of nucleon quark back in nucleon proton momentum transfer proton

EIC NAS Assessment

Deeply Virtual Meson production: quarkantiquark bound state is produced

Deeply Virtual Photon scattering: real photon is produced

Tomographic Image of Quarks and Gluons within Matter

Spatial imaging of Quarks and Gluons via exclusive reactions where the nucleon is left intact in the final state

 $p \rightarrow e + p + v$ 04 х $\int Ldt = 10 \, \text{fb}^{-1}$ 10 < Q² < 17.8 GeV² √s = 45 GeV 0.6 $6.3 \times 10^{-2} < x < 0.1$ 0.1 0.5 $\varsigma_B F(x_B, \, b_T) \ (fm^{-2})$ 0.4 0.2 0.4 0.6 0.8 0.8 0.3 07 √s = 45 GeV 0.2 0.6 $1.6 \times 10^{-2} < x < 2.5 \times 10^{-2}$ 0.1 0.5 0.4 0.4 0.6 0.8 12 02 0.3 E √s = 140 GeV 0.2 $1.6 \times 10^{-3} < x < 2.5 \times 10^{-3}$ 0.1 0.2 0.4 0.6 0.8 1 1.2 b_{T} (fm) arXiv:1108.1713

Deeply Virtual J/\psi production: quarkantiquark bound state is produced

Deeply Virtual Photon scattering: real photon is produced

First ever tomographic images of ocean of gluons within matter

M. Żurek - EIC

Probing non-linear gluon dynamics

What happens to the gluon density in nuclei?

- Number of gluon grows in the low-x limit
- At some point the **density becomes so large** that gluons lose their individual identity and are **strongly overlapping**

Probing non-linear gluon dynamics

- EIC provides a unique opportunity to have very high gluon densities electron – heavy nuclei (e.g., Pb) collisions
- Combined with an unambiguous observables, e.g., di-hadrons (jets) in ep and eA
- EIC will allow to map the transition from a linear to non-linear QCD regime

Q_s - resolution scale at which the number density so large that gluons are no longer independent

$$Q_s^2 \propto \left(\frac{A}{x}\right)^{1/3}$$

Experimental Realizations and Challenges

M. Żurek - EIC

Hadron Storage Ring (RHIC Rings) 41, 100-275 GeV

Electron Storage Ring 5–18 GeV

- Polarized electron source
- 400 MeV injector linac
- Rapid Cycling Synchrotron design to avoid depolarizing resonances

High luminosity Interaction Region(s)

- Luminosity: L= 10³³-10³⁴cm⁻²sec⁻¹ 10 - 100 fb⁻¹/year
- Highly Polarized Beams: 70%
- 25 mrad (IP1) crossing angle with crab cavities
- Bunch Crossing ~ 10.2 ns/98.5 MHz

Hadron Storage Ring (RHIC Rings) 41, 100-275 GeV

Electron Storage Ring 5–18 GeV

- Polarized electron source
- 400 MeV injector linac
- Rapid Cycling Synchrotron design to avoid depolarizing resonances

High luminosity Interaction Region(s)

- Luminosity: L= 10³³-10³⁴cm⁻²sec⁻¹ 10 - 100 fb⁻¹/year
- Highly Polarized Beams: 70%
- 25 mrad (IP1) crossing angle with crab cavities
- Bunch Crossing ~ 10.2 ns/98.5 MHz

ерф

Detector located at 6 o'clock of the EIC Ring

The **ePIC Collaboration** formed in July 2022 is dedicating to the realization of the project detector

- 177 Institutions, 26 countries, 4 world's region
- Currently: > 850 collaborators (from 2024 survey)

EIC Detector Challenges and Requirements

Large center-of-mass energy range: 29-140 GeV

• Large detector acceptance

EIC Detector Challenges and Requirements

Large center-of-mass energy range: 29-140 GeV

• Large detector acceptance

Asymmetric beams

- Asymmetric detector: barrel with electron and hadron end caps
- Large central coverage (-4 < η < 4) in tracking, particle identification, em and hadronic calorimetry
 - High precision low mass tracking
 - Good e/h separation critical for scattered electron ID
 - Separation of e, p, K, p on track level

EIC Detector Challenges and Requirements

luminosity detectors low Q2 tagger Far-forward: particle from nuclear breakup and exclusive process

Large center-of-mass energy range: 29-140 GeV

• Large detector acceptance

Asymmetric beams

- Asymmetric detector: barrel with electron and hadron end caps
- Large central coverage (-4 < η < 4) in tracking, particle identification, em and hadronic calorimetry
 - High precision low mass tracking
 - Good e/h separation critical for scattered electron ID
 - Separation of e, p, K, p on track level

Imaging science program with large ion species range: protons-U

• Specialized detectors integrated in the Interaction Region over 50m

- High spatial-resolution and efficiency and large-area coverage (8 m² of Silicon Vertex Detector):
 - High pixel granularity
 - \circ Very low material budget constraints also at large η (challenge for services)

- High spatial-resolution and efficiency and large-area coverage (8 m² of Silicon Vertex Detector):
 - High pixel granularity
 - Very low material budget constraints also at large η (challenge for services)

- High spatial-resolution and efficiency and large-area coverage (8 m² of Silicon Vertex Detector):
 - High pixel granularity
 - \circ Very low material budget constraints also at large η (challenge for services)

- High spatial-resolution and efficiency and large-area coverage (8 m² of Silicon Vertex Detector):
 - High pixel granularity
 - \circ Very low material budget constraints also at large η (challenge for services)

Tracking Performance

- Backward/Forward momentum resolution in extreme η regions complemented by calorimetric resolution
- Meets PWG requirements elsewhere

Calorimetry

Calorimetry

Challenges:

- Detect the scattered electron and separate them from π (up to 10⁻⁴ suppression factor in backward and barrel ECal)
- Improve the electron momentum resolution at backward rapidities $(2-3\% / \sqrt{E} \oplus (1-2)\%)$ for backward ECal)
- Provide spatial resolution of two photons sufficient to identify decays $\pi^0 \rightarrow \gamma \gamma$ at high energies from ECals
- Contain the **highly energetic hadronic final state and separate clusters** in a dense hadronic environment in Forward ECal and HCal

Electromagnetic Calorimetry

Backward EMCal PbWO₄ crystals

- 2 × 2 × 20 cm³ crystals
- Readout: SiPMs 10µm pixel
- Depth: ~20 X0
- Cooling to keep temperature stable within ± 0.1 °C

Hadronic Calorimetry

Backwards HCal

- Steel + large scintillator tiles sandwich
- SiPM readout
- Exact design still in progress

M. Żurek - EIC

Calorimetry Performance

M. Żurek - EIC

Particle IDentification needs

- Electrons from photons $\rightarrow 4\pi$ coverage in tracking
- Electrons from charged hadrons \rightarrow mostly provided by calorimetry and tracking
- PID on charged pions, kaons and protons from each other on track level \rightarrow **Cherenkov detectors**
 - Cherenkov detectors, complemented by other technologies at lower momenta ToF

Challenge: To cover the entire momentum ranges at different rapitities for an extensive list of the physics processes spanning the \sqrt{s} anticipated at EIC several complementary technologies needed

Particle IDentification needs

- Electrons from photons $\rightarrow 4\pi$ coverage in tracking
- Electrons from charged hadrons \rightarrow mostly provided by calorimetry and tracking
- PID on charged pions, kaons and protons from each other on track level \rightarrow **Cherenkov detectors**
 - Cherenkov detectors, complemented by other technologies at lower momenta ToF

Challenge: To cover the entire momentum ranges at different rapitities for an extensive list of the physics processes spanning the \sqrt{s} anticipated at EIC several complementary technologies needed

Accurate space point for tracking ~30 um
Forward disk and central barrel

Far-Forward Detectors

	Detector	Acceptance
	Zero-Degree Calorimeter (ZDC)	θ < 5.5 mrad (η > 6)
	Roman Pots (2 stations)	$0.0 < \theta < 5.0 \text{ mrad} (\eta > 6)$
Off-	Momentum Detectors (2 stations)	θ < 5.0 mrad (η > 6)
	B0 Detector	$5.5 < \theta < 20.0 \text{ mrad} (4.6 < \eta < 5.9)$

Challenge:

The extended detector's array required to enable primary physics objectives: Detect particles from nuclear breakup and exclusive processes

Subsystems:

- **B0 detector:** Full reconstruction of charged particles and photons
- Off-momentum detectors: Reconstruction of charged spectators from breakup of light nuclei
- Roman pot detectors: Charged particles near the beam
- Zero-degree calorimeter: Neutral particles at small angles

Far-Backward Detectors

Low-Q² tagger

Challenge: Allow quasi real (Q<<1) physics with electron detection in very forward rapidity

high, non-uniform Bremsstrahlung background

Pixel-based trackers (Timepix4), with rate capability of > 10 tracks per bunch and calorimeters for calibration

Luminosity Spectrometer

Challenge: Precise luminosity determination (<1%)

From Bremsstrahlung processes e+p \rightarrow e γ p e+Au \rightarrow e γ Au

AC-LGAD and Scintillating Fiber $23X_0$ ECal

M. Żurek - EIC

Schedule

Schedule

Sep 2022 EIC received \$138M DOE Inflation Reduction Act funding: CD-3A (approve start of long-lead procurements)

Updated Project Schedule:

Based on the actual appropriated FY24 funding (\$98M), on uncertain FY25 budget scenarios (President's Budget is only ~\$113M)

- January 7 9, 2025 Path to CD-2/CD-3 status review, including CD-3B Approval by spring 2025?
- CD-2 Approval Late 2025, Possibility of CD-3C as needed.
- **CD-3 one year later** \rightarrow end of FY26

Summary

EIC science program will profoundly impact our understanding of the most fundamental inner structure of the matter that builds us all

Access to EIC Physics through

- Large kinematic coverage
- Polarized electron and hadron beams and unpolarized nuclear beams with high luminosities
- Detector setup fulfilling specific requirements of the polarized e-p/A collider

The EIC project is progressing towards construction, with the ePIC collaboration established and dedicated to its mission.

Experimental Processes to Access EIC Physics

DIS event kinematics - scattered electron or final state particles (CC DIS, low y)

Neutral Current DIS

 Detection of scattered electron with high precision event kinematics

•

Event kinematics

from the final state

particles (Jacquet-

Blondel method)

Semi-Inclusive DIS

• Precise detection of scattered electron in coincidence with at least 1 hadron

Deep Exclusive Processes

 Detection of all particles in event

Experimental Access to EIC Physics

Access to EIC Physics through

- Large kinematic coverage
- Polarized electron and hadron beams and unpolarized nuclear beams with high luminosities
- Detector setup fulfilling specific requirements of the polarized e-p/A collider