Status of the global $b \to s\ell\ell$ fits

B. Capdevila University of Cambridge, DAMTP & Uni. Autònoma Barcelona, IFAE

The $b \to s\ell\ell$ anomalies

$b \to s \, \mu^+ \mu^-$ anomaly

Several LHCb measurements deviate from Standard model (SM) predictions^{*} by $2-3\sigma$:

- Angular observables in $B^{(0,+)} \to K^{*(0,+)} \mu^+ \mu^-$ LHCb, arXiv:2003.04831, arXiv:2012.13241
- ▶ Branching ratios of $B \to K\mu^+\mu^-$, $B \to K^*\mu^+\mu^-$, and $B_s \to \phi\mu^+\mu^-$

LHCb, arXiv:1403.8044, arXiv:1506.08777, arXiv:1606.04731, arXiv:2105.14007

*: based on hadronic assumptions on which there is no theory consensus yet

LFU violation in $b \to s \,\ell^+ \ell^-$ decays (up to Dec. 2022) Measurements of LFU ratios $R_{K^*}^{[0.045,1.1]}$, $R_{K^*}^{[1.1,6]}$, $R_K^{[1,6]}$ showed deviations from SM by 2.3, 2.5, and 3.1 σ LHCb, arXiv:1705.05802, arXiv:2103.11769 Belle, arXiv:1904.02440, arXiv:1908.01848

LFU violation in $b \to s \, \ell^+ \ell^-$ decays

New LHCb measurement of the LFU ratios $R_{K}^{[0.1,1.1]},\,R_{K}^{[1.1,6]},\,R_{K^{\ast}}^{[0.1,1.1]},\,R_{K^{\ast}}^{[1.1,6]}$

LHCb, arXiv:2212.09152, arXiv:2212.09153.

- ▶ sample of B meson decays in pp collisions collected between 2011 and 2018 (integrated luminosity of 9 fb^{-1})
- new modelling of residual backgrounds due to misidentified hadronic decays
- deviations from SM by $\sim -0.0, +1.1, +0.5$ and -0.4σ

Leptonic modes $B_{s,d} \to \mu^+ \mu^-$

Measurements of $\mathcal{B}(B_{s,d} \to \mu^+ \mu^-)$ by LHCb, CMS, and ATLAS show deviations of only about ~ 1σ with respect to SM predictions*

ATLAS, arXiv:1812.03017 CMS, arXiv:1910.12127,**2212.10311** LHCb, arXiv:1703.05747,2108.09283

ATLAS update missing \Rightarrow full Run 1 + Run 2 LHC combination

*: depends on parameters like V_{cb}

Bobeth, Buras, arXiv:2104.09521

Theoretical Framework

 $b \to s \ell \ell$ in the Weak Effective Theory

- ► Effective Hamiltonian at scale m_b : $\mathcal{H}_{\text{eff}} = \mathcal{H}_{\text{eff, sl}} + \mathcal{H}_{\text{eff, had}}$
- ▶ Semileptonic operators: $(\mathcal{N} = \frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{e^2}{16\pi^2} \approx (34 \text{ TeV})^{-2})$

$$\mathcal{H}_{\text{eff, sl}} = -\mathcal{N}\left(\mathcal{C}_{7}O_{7} + \mathcal{C}_{7}'O_{7}' + \sum_{\ell} \sum_{i=9,10,P,S} \left(\mathcal{C}_{i}^{\ell}O_{i}^{\ell} + \mathcal{C}_{i}'^{\ell}O_{i}'^{\ell}\right)\right) + \text{h.c.}$$

$$O_{7}^{(\prime)} = \frac{m_{b}}{e} (\bar{s}\sigma_{\mu\nu}P_{R(L)}b) F^{\mu\nu}, \quad O_{9}^{(\prime)\ell} = (\bar{s}\gamma_{\mu}P_{L(R)}b)(\bar{\ell}\gamma^{\mu}\ell), \quad O_{10}^{(\prime)\ell} = (\bar{s}\gamma_{\mu}P_{L(R)}b)(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell).$$

$$\mathcal{C}_{7}^{\text{SM}} \simeq -0.3, \qquad \qquad \mathcal{C}_{9}^{\text{SM}} \simeq 4, \qquad \qquad \mathcal{C}_{10}^{\text{SM}} \simeq -4.$$

Not considered here: (pseudo)scalar
$$O_{P,S}$$
 vanish in SM, could appear at dim. 6 in SMEFT (and tensor O_T only at dim. 8 in SMEFT)

► Hadronic operators:

$$\mathcal{H}_{\text{eff, had}} = -\mathcal{N} \frac{16\pi^2}{e^2} \left(\mathcal{C}_8 O_8 + \mathcal{C}'_8 O'_8 + \sum_{i=1,\dots,6} \mathcal{C}_i O_i \right) + \text{h.c.}$$

e.g. $O_1 = (\bar{s} \gamma_\mu P_L T^a c) (\bar{c} \gamma^\mu P_L T^a b), \quad O_2 = (\bar{s} \gamma_\mu P_L c) (\bar{c} \gamma^\mu P_L b)$

Theory of $B \to M\ell\ell$ decays $(M = K, K^*, \phi)$

$$\mathcal{M}(B \to M\ell\ell) = \langle M\ell\ell | \mathcal{H}_{\text{eff}} | B \rangle = \mathcal{N} \left[\left(\mathcal{A}_V^{\mu} + \mathcal{H}^{\mu} \right) \, \bar{u}_\ell \gamma_\mu v_\ell + \mathcal{A}_A^{\mu} \, \bar{u}_\ell \gamma_\mu \gamma_5 v_\ell + \mathcal{A}_S \, \bar{u}_\ell v_\ell + \mathcal{A}_P \, \bar{u}_\ell \gamma_5 v_\ell \right]$$

- ▶ Wilson coefficients $C_i = C_i^{\text{SM}} + C_i^{\text{NP}}$: perturbative, short-distance physics (q^2 independent), well-known in SM, parameterise heavy NP
- local and non-local hadronic matrix elements: non-perturbative, long-distance physics (q² dependent), main source of uncertainty

LHCP 2024

Local matrix elements

$$\begin{aligned} \mathcal{A}_{V}^{\mu} &= -\frac{2im_{b}}{q^{2}} \, \mathcal{C}_{7} \langle M | \bar{s} \, \sigma^{\mu\nu} q_{\nu} \, P_{R} \, b | B \rangle + \mathcal{C}_{9} \langle M | \bar{s} \, \gamma^{\mu} \, P_{L} \, b | B \rangle \\ &+ \left(P_{L} \leftrightarrow P_{R}, \mathcal{C}_{i} \rightarrow \mathcal{C}_{i}^{\prime} \right) \\ \mathcal{A}_{A}^{\mu} &= \mathcal{C}_{10} \langle M | \bar{s} \, \gamma^{\mu} \, P_{L} \, b | B \rangle + \left(P_{L} \leftrightarrow P_{R}, \mathcal{C}_{i} \rightarrow \mathcal{C}_{i}^{\prime} \right) \\ \mathcal{A}_{S,P} &= \mathcal{C}_{S,P} \langle M | \bar{s} \, P_{R} \, b | B \rangle + \left(P_{L} \leftrightarrow P_{R}, \mathcal{C}_{i} \rightarrow \mathcal{C}_{i}^{\prime} \right) \end{aligned}$$

• $\langle M | \bar{s} \Gamma_i b | B \rangle$ matrix elements are parameterised by:

- ▶ 3 form factors for each spin zero final state M = K
- ▶ 7 form factors for each spin one final state $M = K^*, \phi$
- ▶ Determination of form factors
 - ▶ high q^2 : Lattice QCD

HPQCD, arXiv:1306.2384,2207.12468 Fermilab, MILC, arXiv:1509.06235 Horgan, Liu, Meinel, Wingate, arXiv:1310.3722, arXiv:1501.00367

low q²: Continuum methods e.g. Light-cone sum rules (LCSR) Ball, Zwicky, arXiv:hep-ph/0406232 Khodjamirian, Mannel, Pivovarov, Wang, arXiv:1006.4945 Bharucha, Straub, Zwicky, arXiv:1503.05534 Gubernari, Kokulu, van Dyk, arXiv:1811.00983

low + high q^2 : Combined fit to continuum methods + lattice / lattice

Altmannshofer, Straub, arXiv:1411.3161 Bharucha, Straub, Zwicky, arXiv:1503.05534 Gubernari, Kokulu, van Dyk, arXiv:1811.00983 Theory Update: $B \to K$ lattice form factors at all q^2

- ▶ Lattice QCD calculation of the $B \to K$ form factors across the full physical q^2 range
 - \Rightarrow highly improved staggered quark (HISQ) formalism (valence quarks)
 - gluon field configurations by MILC \Rightarrow
 - first fully relativistic calculation, using the heavy-HISQ method \Rightarrow

LHCP 2024

Non-negligible impact on $B \to K \ell \ell$ observables

Predictions with HPQCD'22 Form Factors					
$10^7 \times \mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)$ Standard Model Experiment					
[0.1, 0.98]	0.320 ± 0.025	0.29 ± 0.02	+0.8		
[1.1, 2]	0.329 ± 0.025	0.21 ± 0.02	+3.9		
[2, 3]	0.365 ± 0.027	0.28 ± 0.02	+2.4		
[3,4]	0.366 ± 0.027	0.25 ± 0.02	+3.3		
[4,5]	0.366 ± 0.028	0.22 ± 0.02	+4.4		
[5, 6]	0.366 ± 0.029	0.23 ± 0.02	+3.9		
[6, 7]	0.367 ± 0.032	0.25 ± 0.02	+3.3		
[7, 8]	0.371 ± 0.042	0.23 ± 0.02	+3.1		
[15, 22]	1.150 ± 0.159	0.85 ± 0.05	+1.8		

HPQCD, arXiv:2207.12468 LHCb, arXiv:1403.8044

Non-local matrix elements

$$\mathcal{H}^{\mu} = \frac{-16i\pi^2}{q^2} \sum_{i=1..6,8} \mathcal{C}_i \int dx^4 e^{iq \cdot x} \langle M | T\{j_{\text{em}}^{\mu}(x), O_i(0)\} | B \rangle$$
$$j_{\text{em}}^{\mu} = \sum_q Q_q \, \bar{q} \gamma^{\mu} q$$

- ► Contributions at low q² from QCD factorization (QCDF) Beneke, Feldmann, Seidel, arXiv:hep-ph/0106067
- ▶ Beyond-QCDF contributions the main source of uncertainty
- ▶ Non-local contributions can mimic New Physics in C_9
- \blacktriangleright Several approaches to estimate beyond-QCDF contributions at low q^2
 - ▶ fit of sum of resonances to data
 ▶ direct fit to angular data
 ▶ Light-Cone Sum Rules estimates
 ▶ analyticity + experimental data on b → scc̄
 ▶ Bobeth, Chrzaszcz, van Dyk, Virto, arXiv:1707.07305 Gubernari, van Dyk, Virto, arXiv:1707.07305

Fit setup

$b \to s\ell\ell$ global analyses

Results presented here by:

- ABCDMN (M. Algueró, A. Biswas, B. Capdevila, S. Descotes-Genon, J. Matias, M. Novoa-Brunet) Statistical framework: χ^2 -fit, based on private code arXiv:2304.07330
- ▶ AS / GSSS (W. Altmannshofer, P. Stangl / A. Greljo, J. Salko, A. Smolkovic, P. Stangl) Statistical framework: χ^2 -fit, based on public code flavio arXiv:2212 10497
- CFFPSV (M. Ciuchini, M. Fedele, E. Franco, A. Paul, L. Silvestrini, M. Valli) Statistical framework: Bayesian MCMC fit, based on public code HEPfit
- HMMN (T. Hurth, F. Mahmoudi, D. Martínez-Santos, S. Neshatpour) Statistical framework: χ^2 -fit, based on public code SuperIso

See also similar fits by other groups:

▶ N. Gubernari, M. Reboud, D. van Dvk, J. Virto Statistical framework: Bayesian fit with improved parameterisation of non-local matrix elements, based on public code EOS (see Nico Gubernari & Javier Virto's talks) arXiv:2206.03797

Geng et al., arXiv:2103.12738, Alok et al., arXiv:1903.09617, Datta et al., arXiv:1903.10086, Kowalska et al.. arXiv:1903.10932. D'Amico et al., arXiv:1704.05438. Hiller et al., arXiv:1704.05444.

arXiv:2212.10516

arXiv:23xx xxxxx

Observables in $b \to s\ell\ell$ global analyses

- \blacktriangleright Inclusive decays
 - $\blacktriangleright B \to X_s \gamma \ (\mathcal{B})$
 - $\blacktriangleright B \to X_s \ell^+ \ell^- (\mathcal{B})$
- ► Exclusive leptonic decays
 - $\blacktriangleright B_{s,d} \to \ell^+ \ell^- \ (\mathcal{B})$
- ▶ Exclusive radiative/semileptonic decays
 - $\blacktriangleright B \to K^* \gamma \ (\mathcal{B}, \, S_{K^* \gamma}, \, A_I)$
 - ► $B^{(0,+)} \to K^{(0,+)}\ell^+\ell^-$ (\mathcal{B}_μ , R_K , angular observables)
 - ► $B^{(0,+)} \to K^{*(0,+)} \ell^+ \ell^-$ (\mathcal{B}_μ , $R_{K^{*0}}$, angular observables)
 - $B_s \to \phi \mu^+ \mu^-$ (\mathcal{B} , angular observables)
 - $\Lambda_b \to \Lambda \mu^+ \mu^-$ (\mathcal{B} , angular observables)
- ▶ Fits might include $150 \sim 250$ observables \Rightarrow global $b \rightarrow s\ell\ell$ analyses

Comparison between the groups

- ▶ Different experimental inputs, e.g.
 - ▶ $q^2 \in [6, 8]$ GeV² data (ABCDMN, CFFPSV, HMMN)
 - ▶ High- q^2 data (AS / GSSS, ABCDMN, HMMN)
 - ► Radiative decays (ABCDMN, CFFPSV, HMMN)
 - $\Lambda_b \to \Lambda \mu^+ \mu^-$ (AS / GSSS, HMMN)
- ▶ Different form factor inputs
 - ▶ Low- q^2 : form factors from LCSR, reduced with heavy-quark & large-energy symmetries + (uncorrelated) power corrections. High- q^2 : lattice form factors ($B \rightarrow V\ell\ell$ ABCDMN)
 - ▶ Full q^2 region: form factors from HPQCD lattice fit across all q^2 , with full correlations $(B \rightarrow P\ell\ell \text{ ABCDMN})$
 - Full q^2 region: form factors from combined LCSR + lattice fit, with full correlations (AS / GSSS, HMMN)
 - Low q^2 region: form factors from combined LCSR + lattice fit, with full correlations (CFFPSV)
- ▶ Different assumptions about non-local matrix elements
 - Order of magnitude estimates based on theory calculations from continuum methods, with different parameterisations (ABCDMN, AS / GSSS, HMMN)
 - ▶ Direct fit to data in each scenario, relying on continuum methods only for $q^2 \leq 1 \text{ GeV}^2$ while allowing them to freely grow for larger q^2 (CFFPSV)
- ▶ Different statistical frameworks

New Physics interpretation

General remarks about global fits

Most important Wilson coefficients:

- ▶ $C_{9\mu}$: dominant contributions to angular observables, LFU observables
- ▶ $C_{10\mu}$: dominant contributions to $B_s \to \mu\mu$, LFU observables

"Uninteresting" NP scenarios:

- ▶ $C_{7^{(\prime)}}$: strongly constrained by radiative decays and very low- q^2 bin of $B \to K^* e^+ e^-$
- ▶ $C_{10\mu}$: new $\mathcal{B}(B_s \to \mu^+ \mu^-)$ combination greatly constraints $C_{10\mu}^{\rm NP} \approx 0$
- ▶ $C_{9'\ell,10'\ell}$: dominant contribution from coefficients with right-handed quarks disfavoured by $R_K \approx R_{K^*}$

Interesting NP scenarios:

- ▶ 1D scenarios: $C_{9\mu}^{\text{NP}}$, $C_{9\mu}^{\text{NP}} = C_{9e}^{\text{NP}} = C_9^{\text{U}}$
- ► 2D scenario: $(\mathcal{C}_{9\mu}^{\mathrm{NP}}, \mathcal{C}_{10\mu}^{\mathrm{NP}}), (\mathcal{C}_{9\mu}^{\mathrm{NP}}, \mathcal{C}_{9e}^{\mathrm{NP}}), (\mathcal{C}_{9}^{\mathrm{U}}, \mathcal{C}_{i=10(\mu),9'(\mu),10'(\mu)}^{\mathrm{V},\mathrm{U}})$ (since $R_K \approx R_{K^*} \approx 1$)

1-dimensional global fits

 \blacktriangleright NP scenarios preferred over SM with $\mathrm{Pull}_{\mathrm{SM}}^* \sim 4\sigma$

- Different results due to different assumptions about non-local matrix elements, different choices of form factors and observables, etc.
- ▶ Remarkable agreement between fits of different groups despite different approaches $\Rightarrow b \rightarrow s\ell\ell$ global analyses are robust

B. Capdevila

LHCP 2024

^{*:} Pull_{SM} \neq global significance; conservative global significance (2021) $\simeq 4.3\sigma$ determined in Isidori, Lancierini, Owen, Serra, arXiv:2104.05631

2-dimensional global fits

 $\blacktriangleright\,$ Again, 2D NP scenarios preferred over SM with Pull_{\rm SM} $\sim 4\sigma$

Impressive agreement between fits of different groups despite different approaches (PMD vs PDD & bin [6., 8.])

NP hypothesis that do not allow for LFU show important internal tensions among fit components
 NP hypothesis with LFU embedded are very competitive describing all data

Algueró, Biswas, Capdevila, Descotes-Genon, Matias, Novoa-Brunet; arxiv:2304.07330

Structure of the multidimensional fits

LHCP 2024

Internal coherence of fits including LFU NP to C_9

▶ NP hypothesis with $C_9^{\rm U}$ are very competitive in explaining the data (Pull_{SM} ~ 5.5 σ)

Algueró, Biswas, Capdevila, Descotes-Genon, Matias, Novoa-Brunet; arxiv:2304.07330

NP fits with LFU contributions

 $\blacktriangleright\,$ Two-parameter fit in space of $C_{9\mu}^{\rm V}=-C_{10\mu}^{\rm V}$ and $C_9^{\rm U}$

scenario first considered in Algueró et al., arXiv:1809.08447

- ▶ Large **non-zero** C_9^{U} but LFUV compatible with 0
- ▶ This scenario is one of the most successful NP solutions to solve the $b \rightarrow s\ell\ell$ anomalies
 - \Rightarrow Pull_{SM} = 5.6 σ
 - ⇒ It successfully describes, with optimal internal consistency, $b \rightarrow s\mu\mu$ angular data + LFU ratios
 - \Rightarrow Can arise from RG effects:

Bobeth, Haisch, arXiv:1109.1826 Crivellin, Greub, Müller, Saturnino, arXiv:1807.02068

Model independent connection $b \to s\mu\mu \& b \to c\ell\nu$ (with LFU NP)

- ▶ NP scenario $(C_9^{\text{U}}, C_{9\mu}^{\text{V}} = -C_{10\mu}^{\text{V}})$ allows for connections between $b \to s\ell\ell$ and $b \to c\tau\nu$ $(R_{D^{(*)}})$
- SMEFT condition: $C^{(1)} = C^{(3)}$
- $\blacktriangleright \mathcal{O}_{2322} \Rightarrow \text{LFUV NP } \mathcal{C}_{9\mu}^{\text{V}} = -\mathcal{C}_{10\mu}^{\text{V}} \And \mathcal{O}_{2333} \Rightarrow \text{LFU NP } \mathcal{C}_{9}^{\text{U}}$

 \Rightarrow Pull_{SM} = 6.3 σ

Algueró, Biswas, Capdevila, Descotes-Genon, Matias, Novoa-Brunet; arxiv:2304.07330

LHCP 2024

Enhancement of $b \to s \tau \tau$

 \Rightarrow Typical enhancement by 10^2 - 10^3 compared to SM value

Capdevila, Crivellin, Descotes-Genon, Hofer, Matias; arxiv:1712.01919

Conclusions

Conclusions

- ▶ Substantial reduction on the significance of the most preferred NP scenarios
 - $\Rightarrow C_9$ continues to be the WC where most of the NP signal is encapsulated
 - \Rightarrow LFUV components are mostly suppressed
 - \Rightarrow High significances for scenarios with universal NP $\mathcal{C}_{9}^{\mathrm{U}}$
- ▶ Important tensions in the inner structure of the fit:
 - \Rightarrow LFU ratios are SM-like
 - $\Rightarrow B \to K^{(*)}\mu\mu$ and branching ratios for $B \to K\mu\mu$ continue to deviate with high significance
- ► $R_{D^{(*)}}$ and $b \to s\tau^+\tau^-$ can be correlated from fairly general assumptions: $\Rightarrow b \to s\tau^+\tau^-$ processes dominated by NP approximately three orders of magnitude larger than SM
- Exploit the correlations among $b \to s\ell\ell$ and $b \to c\ell\nu$ and $b \to s\tau\tau$ to test the nature of $\mathcal{C}_9^{\mathrm{U}}$: either NP or hadronic effects (or a combination)

Wishlist

- Explicit numerical experimental likelihoods, e.g. to avoid digitisation of $B_{s,d} \rightarrow \mu\mu$ contour plots
- ▶ Measurements of other LFU observables, like e.g. R_{ϕ} or $Q_{4,5}/D_{P'_{4,5}}$
- ▶ $B \to K^* e^+ e^-$ angular analysis
- ▶ CP asymmetries to constrain imaginary parts of Wilson coefficients
- **Experimental updates** and **new measurements**, not only from **LHCb** but also from **ATLAS** and **CMS**, and eventually from **Belle II**

CMS $B^0 \to K^{*0} \mu^+ \mu^-$ angular analysis

 \Rightarrow CMS measurement highly in agreement with LHCb's result for P_5'

 \Rightarrow Exciting new experimental result largely poised to **increase the significance** for \mathcal{C}_9^U solutions

See Wolfgang Adam talk

Thank you!

Backup slides

$p\mbox{-value}$ SM fit

For the frequentist fits, the *p*-value of goodness-of-fit can be computed from Wilks' theorem

$$p - value_{SM} = 1 - F(\chi^2_{SM}; n_{obs})$$

with $F(\chi^2; n_{obs})$ the χ^2 CDF and n_{obs} the number of independent observables in the fit (measurements of a given observable by different experiments are counted as different observables).

ABCDMN		
	Global fit: $n_{dof} = 256 \implies p - va$	lue = 5.13%
	$LFU \ fit^*: \ n_{\rm dof} = 26 \Rightarrow p - val$	ue = 92.45%
AS		
	Global fit: $n_{dof} = ??? \Rightarrow p - vc$	ulue = ?.?%
	$LFU \ fit^*: \ n_{dof} = ?? \Rightarrow p - ve$	alue = ?.?%
HMMN		
	Global fit: $n_{dof} = ??? \Rightarrow p - vc$	ulue = ?.?%
	$LFU fit^*: n_{dof} = ?? \Rightarrow p - vc$	lue = ?.?%

*LFU fit: all the measured LFU observables + $\mathcal{B}(B_s \to \mu^+\mu^-)$ (all groups) + effective $B_s \to \mu\mu$ lifetime + radiative decays + $\mathcal{B}(B_s \to X_s\mu^+\mu^-)$ (depending on the group)

ABCDMN: Improved QCDF

Improved QCDF (iQCDF) approach: $m_b \to \infty$ and $E_{V,P} \to \infty$ ($V = K^*, \phi, P = K$) decomposition of full form factors (FF)

$$F^{\mathrm{Full}}(q^2) = F^{\infty}(\xi_{\perp}(q^2), \xi_{\parallel}(q^2)) + \Delta F^{\alpha_s}(q^2) + \Delta F^{\Lambda}(q^2)$$

where F stands for any FF (either helicity or transversity basis)

Charles et al; hep-ph/9901378 Beneke, Feldman; hep-ph/0008255 Descotes-Genon, Hofer, Matias, Virto; arXiv:1407.8526

- ▶ $m_b \to \infty$ and $E_{V,P} \to \infty$ symmetries: low- q^2 and LO in α_s and Λ/m_b
 - \Rightarrow **Dominant correlations** automatically taken into account (important for a maximal cancellation of errors)

Capdevila, Descotes-Genon, Hofer, Matias; arXiv:1701.08672

▶ $\mathcal{O}(\alpha_s)$ corrections ⇒ QCDF

$$\langle \ell^+ \ell^- \bar{K}_i^* | \mathcal{H}_{\text{eff}} | \bar{B} \rangle = \sum_{a,\pm} \mathcal{C}_{i,a} \xi_a + \Phi_{B,\pm} \otimes T_{i,a,\pm} \otimes \Phi_{K^*,a} \quad (i = \bot, \|, 0)$$

Beneke, Feldma

Beneke, Feldman, nep-ph/0008255 Beneke, Feldman, Seidel; hep-ph/0106067

•
$$\mathcal{O}(\Lambda/m_b)$$
 corrections $\Rightarrow \Delta F^{\Lambda}(q^2) = a_F + b_F \frac{q^2}{m_B^2} + c_F \frac{q^4}{m_B^4}$

Jäger, Camalich; arXiv:1212.2263 Descotes-Genon, Hofer, Matias, Virto; arXiv:1407.8526

$\ensuremath{\textbf{ABCDMN}}\xspace$: Improved QCDF (vs full FF approach)

- How to estimate ΔF^{Λ} ?
 - \Rightarrow Central values for a_F , b_F , c_F from fit to full FF (continuum calculation)
 - $\Rightarrow \text{ Error estimate: assign uncorrelated errors to} \\ \Delta a_F, \Delta b_F, \Delta c_F = \mathcal{O}(\Lambda/m_b) \times F$

Descotes-Genon, Hofer, Matias, Virto; arXiv:1407.8526

▶ Is this a conservative estimation of errors?

 \Rightarrow iQCDF with a 5% power corrections (right) reproduces the full FF (BSZ param.) approach errors (left) Capdevila, Descotes-Genon, Hofer, Matias; arXiv:1701.08672

ABCDMN: Estimating beyond QCDF contribution at low- q^2

▶ LO (factorisable) charm-loop contribution accounted for in the $Y(q^2)$ (perturbative) function,

$$\mathcal{C}_9^{\text{eff}}(q^2) = \mathcal{C}_9^{\text{SM}} + Y(q^2)$$

Buras, Münz; hep-ph/9501281 Krüger, Lunghi; hep-ph/0008210

- Estimate of the soft-gluon emission contribution at low q^2 :
 - \Rightarrow Calculations based on continuum methods

Khodjamirian, Mannel, Pivovarov, Wang; arxiv:1006.4945 Gubernari, van Dyk, Virto; arxiv:2011.09813

 \Rightarrow Shift in $\mathcal{C}_9^{\text{eff}}$. Order of magnitude for the shift estimated from theory calculations

$$\mathcal{C}_{9i}^{\text{eff}}(q^2) = \mathcal{C}_9^{\text{eff}}(q^2) + \mathcal{C}_9^{\text{NP}} + s_i \delta \mathcal{C}_9^{\text{LD},i}(q^2) \quad (i = \perp, \parallel, 0)$$

Descotes-Genon, Hofer, Matias, Virto; arxiv:1407.8526 Descotes-Genon, Hofer, Matias, Virto; arxiv:1510.04239

ABCDMN: Estimating beyond QCDF contribution at low- q^2

▶ Parameterisation for the long-distance contribution

$$\delta C_9^{\mathrm{LD},\perp}(q^2) = \frac{a^{\perp} + b^{\perp} q^2 (c^{\perp} - q^2)}{q^2 (c^{\perp} - q^2)} \qquad \delta C_9^{\mathrm{LD},\parallel}(q^2) = \frac{a^{||} + b^{||} q^2 (c^{||} - q^2)}{q^2 (c^{||} - q^2)}$$
$$\delta C_9^{\mathrm{LD},0}(q^2) = \frac{a^0 + b^0 (q^2 + s_0) (c^0 - q^2)}{(q^2 + s_0) (c^0 - q^2)}$$

 \Rightarrow We vary s_i in the range [-1, 1]

 $\Rightarrow a^i, b^i, c^i$ parameters floated according to KMPW calculation

Khodjamirian, Mannel, Pivovarov, Wang, arXiv:1006.4945 Descotes-Genon, Hofer, Matias, Virto; arxiv:1407.8526 Descotes-Genon, Hofer, Matias, Virto; arxiv:1510.04239

ABCDMN: Consistency over q^2

Testing the q^2 dependence of $C_9^{\rm NP}$ by means of data:

- Fit to $B \to K^* \mu^+ \mu^-$ (B's + Ang. obs) + $B_s \to \mu^+ \mu^- + B \to X_s \mu^+ \mu^- + b \to s\gamma$
- $\blacktriangleright \ C_9^{\rm NP}$ bin-by-bin fit (assuming KMPW-like $\delta C_9^{{\rm LD},i}(q^2))$
- Good agreement with global fit $(1\sigma \text{ range})$
- ▶ No indication of a strong q^2 dependence
- ▶ Consistency large and low recoil (different theo. treatments)

Algueró, Biswas, Capdevila, Descotes-Genon, Matias, Novoa-Brunet; arxiv:2303.xxxxx LHCP 2024 Backup 6/22

ABCDMN: Statistical framework

We parametrise the Wilson coefficients as,

$$C_i = C_i^{\text{SM}} + C_i^{\text{NP}} \quad (i = 7_{\mu}^{(\prime)}, 9_{\mu}^{(\prime)}, 10_{\mu}^{(\prime)}, C_i^{\text{NP}} \in \mathbb{R} \Rightarrow \text{no CPV})$$

Standard frequentist fit to the NP contributions to the Wilson coefficients,

$$\chi^{2}(C_{i}^{\mathrm{NP}}) = \left(\mathcal{O}^{\mathrm{th}}(C_{i}^{\mathrm{NP}}) - \mathcal{O}^{\mathrm{exp}}\right)_{i} Cov_{ij}^{-1} \left(\mathcal{O}^{\mathrm{th}}(C_{i}^{\mathrm{NP}}) - \mathcal{O}^{\mathrm{exp}}\right)_{j}$$

Both theory and experiment contribute to the covariance matrix

$$\Rightarrow Cov = Cov^{\text{th}} + Cov^{\text{exp}}$$

► Experimental covariance

 \Rightarrow **Experimental correlations** between observables (if not provided, assumed uncorrelated). Assume

gaussian errors (symmetrize if needed)

▶ Theoretical covariance

 \Rightarrow Compute the **theoretical correlations** by performing a multivariate gaussian scan over all nuisance

parameters

$$\blacktriangleright Cov = Cov(C_i)$$

 $\Rightarrow \text{ Mild dependency} \Rightarrow Cov = Cov_{\text{SM}} \equiv Cov(C_i = 0). \text{ Descotes-Genon, Hofer, Matias, Virto; arXiv:1510.04239}$ Capdevila, Crivellin, Descotes-Genon, Matias, Virto; arXiv:1704.05340

ABCDMN: Statistical framework

- ► Fit procedure:
 - $\Rightarrow \textbf{Best fit points (bfp): } \chi^2(C_i^{\rm NP}) \rightarrow \chi^2_{\rm min} = \chi^2(C_{i^{\rm NP}})$
 - ⇒ Confidence intervals: $\chi^2(C_i^{\text{NP}}) \chi^2_{\text{min}} \leq Q^2$ $(1\sigma \rightarrow Q^2 = 1, 2\sigma \rightarrow Q^2 = 4, ...)$

$$\Rightarrow$$
 Compute **pulls** (σ): Pull_{SM} = $\sqrt{\chi^2_{SM} - \chi^2_{min,Sc}}$

- ► Two types of fits
 - \Rightarrow Canonical (or All) fit: fit to all data (246 data points)
 - \Rightarrow LFUV fit: $R_K, R_{K^*}, P_{4,5}^{\prime e\mu}(B \to K^*\ell\ell)$ and $b \to s\gamma$ (22 data points)
- ► Testing different **hypotheses**
 - \Rightarrow Hypotheses with NP only in one Wilson coefficient (1D fits)
 - \Rightarrow Hypotheses with NP in two Wilson coefficients (2D fits)
 - \Rightarrow Hypotheses with NP in the six Wilson coefficients (6D fits)

Descotes-Genon, Hofer, Matias, Virto; arxiv:1510.04239 Capdevila, Crivellin, Descotes-Genon, Matias, Virto; arxiv:1704.05340

ABCDMN: 1D NP fits

	Global (before exp. updates 2022)				
1D Hyp.	bfp	1σ	$\operatorname{Pull}_{\mathrm{SM}}$	p-value (%)	
$C_{9\mu}^{\rm NP}$	-0.67 (-1.01)	[-0.82, -0.52] $([-1.15, -0.87])$	4.5(7.0)	20.2 (24.0)	
$C_{9\mu}^{\rm NP} = -C_{10\mu}^{\rm NP}$	-0.19(-0.45)	[-0.25, -0.13] ($[-0.52, -0.37]$)	3.1(6.5)	9.9 (16.9)	
$C_{9\mu}^{\rm NP} = -C_{9\mu}'$	-0.47(-0.92)	[-0.66, -0.30] ($[-1.07, -0.75]$)	3.0(5.7)	9.5 (8.2)	
	LFUV				
1D Hyp.	bfp	1σ	$\operatorname{Pull}_{\mathrm{SM}}$	p-value (%)	
$C_{9\mu}^{\rm NP}$	-0.21 (-0.87)	[-0.38, -0.04] ($[-1.11, -0.65]$)	1.2(4.4)	92.4 (40.7)	
$C_{9\mu}^{\rm NP} = -C_{10\mu}^{\rm NP}$	-0.08(-0.39)	[-0.15, -0.01] ($[-0.48, -0.31]$)	1.1(5.0)	91.6(73.5)	
$C_{9\mu}^{\rm NP} = -C_{9\mu}'$	-0.04 (-1.60)	[-0.26, 0.15] ($[-2.10, -0.98]$)	0.2 (3.2)	87.5(8.4)	

- \Rightarrow Substantial drop in significances
- $\Rightarrow C_{9\mu}^{\rm NP}$ is the strongest signal for the Global fit
- \Rightarrow *p*-value for $C_{9\mu}^{\text{NP}} = -C_{10\mu}^{\text{NP}}$ reduces significantly (less fit coherence: ang. obs. vs LFU ratios)
- $\Rightarrow\,$ NP contributions to the WC compatible with SM values for the LFUV fit

Algueró, Capdevila, Descotes-Genon, Matias, Novoa-Brunet; arxiv:2104.08921 Algueró, Biswas, Capdevila, Descotes-Genon, Matias, Novoa-Brunet; arxiv:2304.07330

ABCDMN: Are we overlooking LFU NP?

 \Rightarrow Rotation of the basis of operators with a **LFU-LFUV alignment** (instead of flavour)

 $C_{i\ell}^{\rm NP} = C_{i\ell}^{\rm V} + C_i^{\rm U} \quad (C_i^{\rm U} \text{ the same } \forall \ell)$

where i = 9, 10, 9', 10' and $\ell = e, \mu$ (trivial extension to $\ell = \tau$)

 \Rightarrow The NP parameter space can be equally described with $\{C_{i\mu}^{\rm NP}, C_{ie}^{\rm NP}\}$ or $\{C_{i\mu}^{\rm V}, C_i^{\rm U}\}$ $(C_{ie}^{\rm V} = 0)$

 \Rightarrow The LFU vs LFUV language generates non-obvious NP directions in the μ vs e language

$$\left\{ \begin{array}{c} C_{9\mu}^{\mathrm{V}} = -C_{10\mu}^{\mathrm{V}} \\ C_{9}^{\mathrm{U}} \end{array} \right. \Rightarrow \left\{ \begin{array}{c} C_{9\mu}^{\mathrm{NP}} = -C_{10\mu}^{\mathrm{NP}} + C_{9e}^{\mathrm{NP}} \\ C_{9e}^{\mathrm{NP}} \end{array} \right.$$

Algueró, BC, Descotes-Genon, Masjuan, Matias; arxiv:1809.08447

AS: Setup

 \blacktriangleright Quantify agreement between theory and experiment by χ^2 function

$$\chi^2(\vec{C}) = \left(\vec{O}_{\rm exp} - \vec{O}_{\rm th}(\vec{C})\right)^{\rm T} \left(C_{\rm exp} + C_{\rm th}(\vec{C})\right)^{-1} \left(\vec{O}_{\rm exp} - \vec{O}_{\rm th}(\vec{C})\right) \,.$$

- theory errors and correlations in covariance matrix $C_{\rm th}$
- experimental errors and available correlations in covariance matrix C_{exp}
- ▶ Theory errors depend on new physics Wilson coefficients $C_{th}(\vec{C})$ *NEW*
- $\Delta \chi^2$ and pull Altmannshofer, PS, arXiv:2103.13370

$$\operatorname{pull}_{1\mathrm{D}} = 1\sigma \cdot \sqrt{\Delta\chi^2}, \quad \text{where } \Delta\chi^2 = \chi^2(\vec{0}) - \chi^2(\vec{})$$

 $C_{\text{best fit}}$).

$$\text{pull}_{2\text{D}} = 1\sigma, 2\sigma, 3\sigma, \dots$$
 for $\Delta \chi^2 \approx 2.3, 6.2, 11.8, \dots$

▶ New physics scenarios in Weak Effective Theory (WET) at scale 4.8 GeV

AS: Theory uncertainties in presence of NP

AS: Theory uncertainties in presence of NP

AS: Parameterisation of beyond-QCDF contributions for $B \to K$

$$\begin{aligned} \mathcal{C}_{9}^{\text{eff}}(q^2) &\to \mathcal{C}_{9}^{\text{eff}}(q^2) + a_K + b_K(q^2/\,\text{GeV}^2) \quad \text{at low } q^2 \,, \\ \mathcal{C}_{9}^{\text{eff}}(q^2) &\to \mathcal{C}_{9}^{\text{eff}}(q^2) + \mathcal{C}_K \qquad \text{at high } q^2 \,, \end{aligned}$$

$$\begin{aligned} &\operatorname{Re}(a_K) = 0.0 \pm 0.08 , & \operatorname{Re}(b_K) = 0.0 \pm 0.03 , & \operatorname{Re}(c_K) = 0.0 \pm 0.2 , \\ &\operatorname{Im}(a_K) = 0.0 \pm 0.08 , & \operatorname{Im}(b_K) = 0.0 \pm 0.03 , & \operatorname{Im}(c_K) = 0.0 \pm 0.2 . \end{aligned}$$

 1σ uncertainties enclose the effects considered in Khodjamirian et al. arXiv:1006.4945, Beylich et al. arXiv:1101.5118, Khodjamirian et al. arXiv:1211.0234

AS: Parameterisation of beyond-QCDF contributions for $B \to K^*$ and $B_s \to \phi$

$$\begin{array}{ccc} \mathcal{C}_7^{\rm eff}(q^2) & \to \mathcal{C}_7^{\rm eff}(q^2) + a_{0,-} + b_{0,-}(q^2/\,{\rm GeV}^2) \\ \mathcal{C}_7' & \to \mathcal{C}_7' + a_+ + b_+(q^2/\,{\rm GeV}^2) \end{array} & \text{at low } q^2 \,, \end{array}$$

 $\mathcal{C}_9^{\text{eff}}(q^2) \to \mathcal{C}_9^{\text{eff}}(q^2) + c_\lambda \quad \text{at high } q^2,$

$\operatorname{Re}(a_{\pm}) = 0.0 \pm 0.004$,	$\operatorname{Re}(b_{+}) = 0.0 \pm 0.005$,	$\operatorname{Re}(c_{+}) = 0.0 \pm 0.3$,
$\text{Im}(a_{\pm}) = 0.0 \pm 0.004$,	$\text{Im}(b_{\pm}) = 0.0 \pm 0.005$,	$\text{Im}(c_+) = 0.0 \pm 0.3$,
$\operatorname{Re}(a_{-}) = 0.0 \pm 0.015$,	$\operatorname{Re}(b_{-}) = 0.0 \pm 0.01$,	$\operatorname{Re}(c_{-}) = 0.0 \pm 0.3$,
$\text{Im}(a_{-}) = 0.0 \pm 0.015$,	$\text{Im}(b_{-}) = 0.0 \pm 0.01$,	$Im(c_{-}) = 0.0 \pm 0.3$,
$\operatorname{Re}(a_0) = 0.0 \pm 0.12$,	$\operatorname{Re}(b_0) = 0.0 \pm 0.05$,	$\operatorname{Re}(c_0) = 0.0 \pm 0.3$,
$Im(a_0) = 0.0 \pm 0.12$,	$\text{Im}(b_0) = 0.0 \pm 0.05$,	$\operatorname{Im}(c_0) = 0.0 \pm 0.3$.

 1σ uncertainties enclose the effects considered in Khodjamirian et al. arXiv:1006.4945, Beylich et al. arXiv:1101.5118

CFFPSV: Parameterisation of non-local hadronic matrix elements

$$\begin{split} H_V^- \propto \left\{ \left(\mathcal{C}_9^{\rm SM} + \boldsymbol{h}_-^{(1)} \right) \widetilde{V}_{L-} + \frac{m_B^2}{q^2} \left[\frac{2m_b}{m_B} \left(\mathcal{C}_7^{\rm SM} + \boldsymbol{h}_-^{(0)} \right) \widetilde{T}_{L-} - 16\pi^2 h_-^{(2)} q^4 \right] \right\} \\ H_V^+ \propto \left\{ \left(\mathcal{C}_9^{\rm SM} + \boldsymbol{h}_-^{(1)} \right) \widetilde{V}_{L+} + \frac{m_B^2}{q^2} \left[\frac{2m_b}{m_B} \left(\mathcal{C}_7^{\rm SM} + \boldsymbol{h}_-^{(0)} \right) \widetilde{T}_{L+} - 16\pi^2 \left(\boldsymbol{h}_+^{(0)} + \boldsymbol{h}_+^{(1)} q^2 + \boldsymbol{h}_+^{(2)} q^4 \right) \right] \right\} \\ H_V^0 \propto \left\{ \left(\mathcal{C}_9^{\rm SM} + \boldsymbol{h}_-^{(1)} \right) \widetilde{V}_{L0} + \frac{m_B^2}{q^2} \left[\frac{2m_b}{m_B} \left(\mathcal{C}_7^{\rm SM} + \boldsymbol{h}_-^{(0)} \right) \widetilde{T}_{L0} - 16\pi^2 \sqrt{q^2} \left(\boldsymbol{h}_0^{(0)} + \boldsymbol{h}_0^{(1)} q^2 \right) \right] \right\} \end{split}$$

- ▶ $h_{-}^{(0)}$ and $h_{-}^{(1)}$ can be considered as constant shifts to the WCs $C_{7,9}^{SM}$, hence indistinguishable from universal NP contributions to $O_{7,9}$
- ▶ remaining parameters describing purely hadronic contributions

CFFPSV: Parameterisation of non-local hadronic matrix elements

HMMN: New Physics vs hadronic fit (Status 2021)

Non-local matrix element contributions can mimic $C_9^{\rm NP}$ since both appear in the vectorial helicity amplitude

$$H_V^{\mu} \propto \left\{ \mathcal{C}_9^{\text{eff}} \tilde{V}_{\lambda}(q^2) + \frac{m_B^2}{q^2} \left[\frac{2m_b}{m_B} \mathcal{C}_7^{\text{eff}} \tilde{T}_{\lambda}(q^2) - 16\pi^2 \left(\text{LO in QCDf} + h_{\lambda}(q^2) \right) \right] \right\}$$

Instead of guesstimating $h_{\lambda}(q^2)$, can be parameterised by a general ansatz: Jäger, Camalich, arXiv:1412.3183 Ciuchini et al., arXiv:1512.07157 $h_{\pm,[0]} = \left[\sqrt{q^2} \times\right] \left(h_{\pm,[0]}^{(0)} + q^2 h_{\pm,[0]}^{(1)} + q^4 h_{\pm,[0]}^{(2)}\right)^{\text{nova, Hurth, Mahmoudi, Martinez-Santos, SN, arXiv:1702.02234}}$

NP effect in C_9 are embedded in the hadronic contributions \Rightarrow Wilks' test can be used to compare separate fits to:

- Hadronic quantities $h_{+,-,0}^{(0,1,2)}$ (18 parameters)
- Wilson coefficient $C_9^{\rm NP}(1 \text{ parameter})$

$B \to K^* \gamma / \mu \mu$ observables				
	Real $C_9^{\rm NP}$ (1)	Hadronic fit h_{λ} (18)		
Plain SM	6.0σ	4.7σ		
Real C_9^{NP}	-	1.5σ		

A. Arbey, T. Hurth, F. Mahmoudi, SN: 2006.04213

■ Hadronic fit describes the data well, however adding 17 more param. to NP doesn't significantly improve the CL (1 F _) B. Candevila
LHCP 2024
Backup 18/22 HMMN: New Physics vs hadronic fit (minimal description, Status 2021)

18-parameter description of the hadronic contributions cannot get strongly constrained with current data

A (minimal) description of hadronic contributions with fewer parameters

$$h_\lambda(q^2) = -rac{ ilde V_\lambda(q^2)}{16\pi^2} rac{q^2}{m_B^2} \Delta {\cal C}_9^{\lambda,{
m PC}}$$

a different Δ_9^{PC} for each helicity $\lambda = +, -, 0$ $\rightarrow 3$ (6) free parameters if assumed real (complex)

If NP in C_9 is the favoured scenario, the different fitted helicities should give the same value \Rightarrow Can work as a null test for NP

	best fit value
$\Delta C_9^{+,\mathrm{PC}}$	$(3.39 \pm 6.44) + i(-14.98 \pm 8.40)$
$\Delta C_9^{-,\mathrm{PC}}$	$(-1.02 \pm 0.22) + i(-0.68 \pm 0.79)$
$\Delta C_9^{0, PC}$	$(-0.83 \pm 0.53) + i(-0.89 \pm 0.69)$

Fitted parameters not the same for different helicities but in agreement with each other within 1σ

$B \to K^* \gamma / \mu \mu$ observables				
	Real $\mathcal{C}_{9}^{\mathrm{NP}}$ (1)	Hadronic fit $\Delta C_9^{\lambda, \text{PC}}$ (6)		
Plain SM	6.0σ	5.5σ		
Real C_9^{NP}	_	1.8σ		

 \blacksquare Adding the hadronic parameters improve the fit with less than 2σ significance

 \Rightarrow Strong indication that the NP interpretation is a valid option, although the situation remains inconclusive

HMMN: Multi-dimensional global fit (Status 2021)

Considering only one or two Wilson coefficients may not give the full picture

A generic set of Wilson coefficients: $C_7, C_8, C_9^\ell, C_{10}^\ell, C_S^\ell, C_P^\ell$ + primed coefficients

All observables with $\chi^2_{\rm SM} = 225.8$				
$\chi^2_{\rm min} = 151.6; {\rm Pull_{SM}} = 5.5(5.6)\sigma$				
δι	27	δC_8		
0.05 =	± 0.03	-0.70 ± 0.40		
δι	27		$\delta C'_8$	
-0.01	± 0.02	0.0	00 ± 0.80	
δC_9^{μ}	δC_9^e	$\delta {\cal C}^{\mu}_{10}$	δC_{10}^e	
-1.16 ± 0.17	-6.70 ± 1.20	0.20 ± 0.21	degenerate w/ $\mathcal{C}_{10}^{\prime e}$	
$\delta C_9^{\prime \mu}$	$\delta C_9'^e$	$\delta C_{10}^{\prime \mu}$	$\delta C_{10}^{\prime e}$	
0.09 ± 0.34	1.90 ± 1.50	-0.12 ± 0.20	degenerate w/ \mathcal{C}^e_{10}	
$C^{\mu}_{Q_1}$	$C^e_{Q_1}$	$C^{\mu}_{Q_2}$	$C^e_{Q_2}$	
0.04 ± 0.10	-1.50 ± 1.50	-0.09 ± 0.10	-4.10 ± 1.5	
$C_{Q_1}^{\prime\mu}$	$C_{Q_1}^{\prime e}$	$C_{Q_2}^{\prime\mu}$	$C_{Q_2}^{\prime e}$	
0.15 ± 0.10	-1.70 ± 1.20	-0.14 ± 0.11	-4.20 ± 1.2	

- Considering most general NP description and eliminating insensitive params. and flat directions based on the fit and not based on data, look-elsewhere effect is avoided
- Many parameters are weekly constrained at the moment
- ► Effective degree of freedom is (19)
- Effective degrees of freedom: degrees of freedom minus the spurious degrees of as realised from likelihood profiles, correlations and C_i^{NP} only weakly affecting the χ^2 such that $|\chi^2(C_i^{NP} \neq 0) - \chi^2(C_i^{NP} = 0)| \lesssim 1$

HMMN: Comparison of different multi-dimensional global fits (Status 2021)

Set of	WC p	baram.	$\chi^2_{ m min}$	Pull _{SM}	Improvement
SN	[0	225.8	-	-
\mathcal{C}_9^{μ}		1	168.6	7.6σ	7.6σ
$\mathcal{C}_9^\mu,\mathcal{C}$	$^{\mu}$ 10	2	167.5	7.3σ	1.0σ
$\mathcal{C}_7, \mathcal{C}_8, \mathcal{C}_9^{(e, f)}$	$^{\mu)}, {\cal C}_{10}^{(e,\mu)}$	6	158.0	7.1σ	2.0σ
All non-pri	med WC	10	157.2	6.5σ	0.1σ
All WC (inc	l. primed) 2	20(19)	151.6	$5.5(5.6)\sigma$	$0.2(0.3)\sigma$

 $Pull_{SM}$ of 1, 2, 6, 10 and 20 dimensional fit:

- ▶ In the last column the significance of improvement of the fit compared to the scenario of the previous row is given
- ▶ The "All non-primed WC" includes in addition to the previous row, the scalar and pseudoscalar Wilson coefficients
- ▶ The last row also includes the chirality-flipped counterparts of the Wilson coefficients
- ▶ The number in parentheses corresponds to the effective degrees of freedom (19)

HMMN: Evolution in the $(C_{9\mu}^{\text{NP}}, C_{10\mu}^{\text{NP}})$ plane

