

LFU measurement and flavour anomalies at LHCb

Guillaume Pietrzyk, on behalf of the LHCb experiment

12th Edition of the Large Hadron Collider Physics Conference

June 4th 2024

Flavour anomalies

Tensions with the Standard Model (SM) have been seen in recent years in decays involving $b \rightarrow c l \bar{v}_l$ and $b \rightarrow s l l$ transitions

- Tree-level semileptonic decay:
 - $\Rightarrow \mathcal{B} \sim 10\% \rightarrow \text{high signal yields}$
 - Probe 3rd generation of leptons with potential enhanced NP coupling
 - ♥ Non-reconstructed neutrinos → challenging analyses with substantial background

- Rare penguin decay:
 - Fully reconstructible final state
 - Probe higher-order diagrams where New Physics (NP) particles can appear
 - $\mathcal{P} \mathcal{B} \sim 10^{-6} \rightarrow \text{low signal yields}$

- Measurement of the branching fraction ratios $R(D^+)$ and $R(D^{*+})$ using muonic τ decays [LHCb-PAPER-2024-007, in preparation]
- Comprehensive analysis of local and nonlocal amplitudes in the $B^0 \rightarrow K^{*0} \mu^+ \mu^$ decay [LHCb-PAPER-2024-011]

Measurement of the branching fraction ratios $R(D^+)$ and $R(D^{*+})$ using muonic τ decays [LHCb-PAPER-2024-007, in preparation]

Lepton Flavour Universality (LFU) tests in $b \rightarrow c l \nu$ transitions

- <u>LFU in the Standard Model (SM)</u>: coupling to e, μ and τ is universal. Differences are only driven by lepton masses
- New Physics can be manifested through experimental departures from LFU
- Experimental LFU test through $R(H_c)$ ratio:

$$R(H_c) = \frac{\mathcal{B}(H_b \to H_c \tau \nu_{\tau})}{\mathcal{B}(H_b \to H_c \mu \nu_{\mu})} \qquad H_b = B^0, B^+_{(c)}, B^0_s, \Lambda^0_b$$
$$H_c = D^*, D^0, D^+, D_s, J/\psi$$

- Ratio improves theoretical and experimental precision
- Most precise measurements seen in $R(D) R(D^*)$:
 - HFLAV Summer 2023: 3.3σ tension from SM
 - Recent LHCb measurements with leptonic [PRL 131 (2023) 111802 and hadronic [PRD 108 (2023) 012018] τ decays
 - D^* longitudinal polarization in $B^0 \rightarrow D^{*-} \tau^+ \nu_{\tau}$ decays [LHCB-PAPER-2023-020]

Branching fraction ratios $R(D^+)$ and $R(D^{*+})$: decay topology

 $R(D^+) =$

$$R(D^{*+}) =$$

- Use $D^{*+} \rightarrow D^+ \pi^0$
- $K^-\pi^+\pi^+\mu^-$ final state common to all four modes.

$$R(D^{(*)+}) = \frac{\epsilon_{\mu}^{D^{(*)+}}}{\epsilon_{\tau}^{D^{(*)+}}} \frac{N_{\tau}^{D^{(*)+}}}{N_{\mu}^{D^{(*)+}}} \frac{1}{\mathcal{B}(\tau^{-} \to \mu^{-}\nu_{\tau})}$$

Efficiency ratio determined from MC Yield ratio from data through a fit to m^2_{miss} , E_μ and $q^2 = (p_B - p_D)^2$

- Main challenges:
 - Non-reconstructed ν and π^0/γ
 - Big data samples (> 3M candidates) → Sensitive to small mis-modelings

Sample selection

- Dataset: 2015 + 2016 (2.0fb⁻¹)
- Requirements on $K^-\pi^+\pi^+\mu^-$ candidates:
 - Kinematic
 - Topologic
 - Particle identification
- Fit $m(K^-\pi^+\pi^+)$ and apply <u>sPlot</u> technique to remove fake D^+ bkg.
- BDT-based isolation tool against bkg with additional charged and neutral particles:
 - Create four samples enriched with different bkg contributions
 - Final fit performed simultaneously in the four samples

Simulation

- <u>Role</u>: Obtain efficiencies and fit templates
- Huge statistics needed: not feasible with full LHCb simulation.
- <u>Solution</u>: Use *Tracker-Only* simulation
 - Missing detector effects emulated offline
 - $\times 8$ faster than full LHCb simulation
- Simulation corrections to match data distributions:
 - Reweighting of kinematics and $D^+ \rightarrow K^- \pi^+ \pi^+$ Dalitz resonances
 - QED effects through soft-photon corrections [PRL 120 (2018) 261804]
- Excellent Data/simulation agreement reached!

Templates building and form factors

- Simulation templates:
 - Signal $(B \rightarrow D^{(*)} l \nu_l)$. Form factors from BGL [PRD 94 (2016) 094008, Eur. Phys. J. <u>C (2022) 82:1141</u>]
 - Bkg from $B \rightarrow D^{**}X$ decays. Form factors from BLR [PRD 95 (2017) 014022]
 - Double-charm bkg
 - $\Lambda_b^0
 ightarrow nD^+ \mu^- ar{
 u}_\mu$ bkg
- Data templates:
 - Combinatorial bkg: Obtained from same-sign $D^+\mu^+$ data
 - <u>Muon mis-identification</u>: Obtained from nonmuonic control control samples

First analysis to use and implement HAMMER through RooHammerTool [<u>Eur. Phys. J. C</u> (2020) 80:883, JINST 17 (2022) T04006] → Fast and exact form factors variations in the fit model!

Results

• Analysis results:

 $R(D^+) = 0.249 \pm 0.043_{\text{stat}} \pm 0.047_{\text{sys}}$ $R(D^{*+}) = 0.402 \pm 0.081_{\text{stat}} \pm 0.085_{\text{sys}}$ $\rho = -0.39$

 Main systematics from form-factor parametrisations and bkg modelings.

Systematic uncertainties

Source	$\mathcal{R}(D^+)$	$\mathcal{R}(D^{*+})$
Form factors	0.023	0.035
$\overline{B} \to D^{**}[D^+X]\mu/\tau\nu$ fractions	0.024	0.025
$\overline{B}^{+/0} \to D^+ X_c X$ fraction	0.020	0.034
Misidentification	0.019	0.012
Simulation size	0.009	0.030
Combinatorial background	0.005	0.020
Data/simulation agreement	0.016	0.011
Muon identification	0.008	0.027
Multiple candidates	0.007	0.017
Total systematic uncertainty	0.047	0.086

New $R(D) - R(D^*)$ HFLAV average

- New result compatible with World Average (WA) and SM
- New tension with SM: 3.17 σ

Comprehensive analysis of local and nonlocal amplitudes in the $B^0 \rightarrow K^{*0}\mu^+\mu^-$ decay [LHCb-PAPER-2024-011, arXiv:2405.17347]

$B^0 \rightarrow K^{*0} \mu^+ \mu^-$: some intriguing effects

• Described by $b \rightarrow s \mu \mu$ penguin transitions:

Ā

 $C_i^{(\prime)}$ (Wilson coeff.): short-distance, sensitive to NP through $C_i = C_i^{SM} + \Delta C_i^{NP}$ O_i^{\prime} (Operators): long-distance, dependent to QCD form factors

- Tensions with SM are present in angular observables and differential decay rates of $B^0 \rightarrow K^{*0} \mu^+ \mu^-$
- Points to a NP vector contribution through $\Delta C_9^{\text{NP}} \neq 0$ [Eur. Phys. J. <u>C (2023) 83:648</u>]
- <u>Important question</u>: Is this a genuine NP effect and a mismodelled QCD contribution?

 $B^0 \rightarrow K^{*0} \mu^+ \mu^-$: a complex system

Non-resonant $b \rightarrow s\mu\mu$ penguin transitions

Local amplitudes

$B^0 \rightarrow K^{*0} \mu^+ \mu^-$: a complex system

Contributions from $c\bar{c}$ resonances!

Nonlocal amplitudes

Dangerous They can enter the analysis region and mimic $\Delta C_i^{NP} \neq 0$

→ Need a complete simultaneous experimental modeling of local and nonlocal amplitudes!

$B^0 \rightarrow K^{*0} \mu^+ \mu^-$: analysis strategy

- Unbinned measurement of **angular observables** through a parametrisation of q^2 and the 3 decay angles θ_l , θ_K and ϕ
- <u>Dataset</u>: Run 1 (2011-2012) + Run 2 (2016-2018): 8.4fb⁻¹
 → First analysis to use the full dataset!

Parametrisation of local and nonlocal contributions

Results

- Impressive modeling of the full q^2 spectrum!
- Results in agreement with previous LHCb analyses
 - Biggest deviation is seen with: $\Delta C_9^{NP} = -0.71 \pm 0.33$ (2.1 σ from zero!)
- Global significance: 1.5σ from SM

Interpretation of the measurement

- Analysis makes it possible to separate local from non-local contributions!
- Non-local contributions do influence angular observables

- Cyan: Fixing experimental local results to SM predictions:
 - Cyan and yellow: impact of non-local modelling
 - Cyan and red: impact of possible NP
- $\rightarrow P'_5$ tension cannot be fully described by non-local contributions!

Towards Run 3 data

First *B* decays plots of 2024

- LHCb is collecting copious data samples of *B* decays thanks to increased pile-up (from 1 to 5) and trigger efficiencies.
- Precision measurements expected with 2024 data!

Summary

- New measurement of $R(D^+)$ and $R(D^{*+})$ using muonic τ decays transitions compatible with world average and SM expectations:
 - $\sim 3\sigma$ tension remains
- Complex angular analysis of $B^0 \to K^{*0} \mu^+ \mu^-$ allows to separate local from non-local effects:
 - Important input for theorists to improve our understanding of non-local effects
 - SM tensions not fully excluded
- LHCb is collecting high *B*-decays yields:
 - Expect precise updates on LFU and flavour anomalies measurements!

BACKUP

$R(D) - R(D^*)$ results in the 1π sample

$R(D) - R(D^*)$ results in the 2π sample

$R(D) - R(D^*)$ results in the 1K sample

Neutrino Reconstruction

• For muonic decay:

•
$$p_{B_Z} = \frac{m_B}{m_Y} p_{Y_Z}$$

p_B direction aligns with the vector connecting *B* decay vertex and associated PV

- For hadronic *τ* decay:
 - Four-momentum conservation
 - Constraints of τ and B known masses
 - p_B direction aligns with the vector connecting *B* vertex and associated PV
 - p_{τ} direction aligns with the vector connecting τ and B vertices
 - Solve equations to determine missing momentum with two-fold ambiguity

Local form factors interpolation

• Comparison between prior and posterior

Impact of non-local amplitudes on the WCs, shown per helicity

P-wave differential BF

- Cyan: Fixing experimental local results to SM predictions:
 - Cyan and yellow: impact of non-local modelling
 - Cyan and red: impact of possible NP

Wilson coefficients results

Angular fit: $low-q^2$

Angular fit: central- q^2

Angular fit: high- q^2

Z-expension: another cool method!

First *B* decays plots of 2024

LHCB-FIGURE-2024-007