

Rare Decays at CMS and ATLAS

Zhangqier Wang

On behalf of the CMS and ATLAS Collaboration

June, 4th 2024 12th LHCP Conference

- Introduction
- $B^0 \rightarrow K^* \mu \mu$ angular analysis at CMS
 - Analysis Strategy
 - Selections and Fitting Procedure
 - Results
- $B_s \rightarrow \mu \mu$ lifetime measurement at ATLAS
- Summary

Detailed talk this afternoon

- The B rare decay is the promising way for indirect new physics searches
 - Flavor Changing Neutral Current (FCNC) decays are suppressed in the SM, typical BR < 10^{-6}
 - New physics might enter at this level
 - A sensitive probe to new physics
 - Branching fraction
 - Angular distribution
 - Lifetime
- Unique rare b→sℓℓ process
 - B→K(*)ℓℓ where multiple discrepancies from the SM are observed
 - First full angular result by CMS
 - $B_s \to \mu \mu$
 - Lifetime measurement by ATLAS

Rare B Decay Anomalies

- Global fits with the Wilson coefficients C₉ and C₁₀ of the vector and pseudo-vector operators O₉ and O₁₀ in the effective 4-fermion interaction
- Multiple discrepancies are observed in rare B decays
 - 2-3σ anomalies in branching ratios and angular observables
- Recent B(s)→μμ measurements indicate that the abnormally comes from vector leptonic coupling (Only O₁₀ contributes to B(s)→μμ).
 - the C9 Wilson coefficient are consistent throughout the different b \rightarrow sµµ modes

$B^0 \rightarrow K^* \mu\mu$ angular analysis at CMS

$B \rightarrow K^* \ell \ell$ Angular Rare Decay

- $B^0 \to K^*(K^* \to K\pi) \mu\mu$
- Three observables: θ_l , θ_k , ϕ
 - Two planes for $K\pi$ and $\mu\mu$
 - θ_l , θ_k in rest frame

Expressed by a set of clean observables related to the Wilson coefficients

JHEP 01 (2013) 048

$$\frac{1}{d\Gamma/dq^2} \frac{P\text{-wave}_{d^4\Gamma}}{dq^2 d\cos\theta_l d\cos\theta_K d\phi} = \frac{9}{32\pi} \left[\frac{3}{4} (1 - F_L) \sin^2\theta_K + F_L \cos^2\theta_K \right]$$

$$F_L \text{ is the fraction of longitudinal polarization of the K* meson}$$

$$+ \left(\frac{1}{4} (1 - F_L) \sin^2\theta_K - F_L \cos^2\theta_K \right) \cos 2\theta_l \qquad q^2 \text{ : invariant mass squared of dimuon}$$

$$+ \frac{1}{2} P_1 (1 - F_L) \sin^2\theta_K \sin^2\theta_l \cos 2\phi + \frac{1}{2} P_2 \sin^2\theta_K \sin^2\theta_l \cos 2\phi + \sqrt{(1 - F_L)F_L} \left(\frac{1}{2} P_4 \sin 2\theta_K \sin 2\theta_l \cos \phi + \frac{1}{2} P_5 \sin 2\theta_K \sin 2\theta_l \sin \phi \right) + \frac{1}{2} P_2 (1 - F_L) \sin^2\theta_K \cos \theta_l - \frac{1}{2} P_8 \sin 2\theta_K \sin^2\theta_l \sin 2\phi_l \sin 2\phi_l$$

• The Kπ system could also be in S-wave configuration, which is added as another signal component.

2024/6/4

Z. Wang LHCP2024

Discrepancies between LHCb results and the prediction, not seen in CMS Run 1 result.

Selections

- CMS Run 2 data 2016—2018
- Final states reconstructed with 2 muons + 2 hadrons
- BDT used to further suppress the background
 - input features: decay-vertex quality and displacement, isolation, mass of Kπ system
- Veto based on mass is applied
 - exclude $B^+ \to K^+ \mu \mu$, $B_s \to \phi \mu \mu$ processes

• In each q^2 bin, a 4D unbinned maximum likelihood fit to is performed

- Fitting set up
 - Mass shapes (signal and background) $S^{c}(m)$, $S^{M}(m)$, $B^{m}(m)$
 - Signal efficiency ϵ^{C} , ϵ^{M} from simulation.
 - Angular distribution of the background $B^a(cos\theta_K, cos\theta_l, \phi)$, determined using sidebands
 - Simultaneous fit on each year of collected data.

Fit Projections

140 fb⁻¹ (13 TeV)

--Background --Total fit

-<mark>∔</mark>- Data ••••• Signal

CMS Preliminary

 $4.3 < a^2 < 6 \text{ GeV}^2$

∑98 300

Events / 15 N ⁵⁰⁰

150

100

50

- Projections on invariant mass and 3 angle observables
- Good agreement between data and pdf projections
 - Example $4.3 < q^2 < 6 \, GeV^2$
 - Others in back up

- Two sets of predictions are shown: FLAVIO and EOS
 - <u>FLAVIO</u>: local form-factors (LQCD and Light-Cone Sum Rule) + non-local form-factors (QCDF)
 - EOS: local form-factors (LQCD and LCSR), novel parametrization of non-local form-factors
- Clear tensions in the q^2 region below the J/ ψ for the P5' and P2 parameters
- The other observables are in agreement with the prediction (in back up).

Public result link (CMS-PAS-BPH-21-002)

Comparison to Experimental Results

- The results are among the most precise experimental measurements of the angular observables of this decay.
- Good agreement with LHCb result. Same tension from the predictions observed in P_2 and P'_5 .
- The combined tension from the prediction will increase.

CMS

$B_s \rightarrow \mu \mu$ lifetime measurement at ATLAS

Detailed talk this afternoon

Why $B_s \rightarrow \mu \mu$ lifetime ?

- $B_s \rightarrow \mu \mu$ is a extremely rare decay in standard model
 - b->u flavor changing neutral current
 - Helicity suppressed
 - Branching fraction $(3.66 \pm 0.14) \times 10^{-9}$
- Why lifetime is important?
 - only the *CP*-odd heavy mass eigenstate of *B_s* meson decays into a dimuon final state
 - Light state lifetime: 1.427 ps
 - Heavy state lifetime: 1.616 ps
- Different composition of states may be allowed by New Physics.

Helicity Suppressed μ^+ B_s μ^-

Lifetime Measurement Strategy

- Using ATLAS 2015-2016 data (26.3 fb^-1)
- Dimuon final states
 - Invariant mass [4.766, 5.966] GeV
- Normalization channel
 - $B \to J/\psi K$
- Proper decay time calculated from decay length
 - $t_{\mu\mu} = \frac{L_{xy}m_{B_s}}{p_T^{B_s}}$ (L_{xy} decay length)
- Conducted fit on mass distribution
- Extract background-subtracted data in proper decay time using sPlot.
- Fit with different lifetime signals to extract the $B_s \rightarrow \mu \mu$ lifetime

Measured Lifetime

Measured Value

$$\tau_{\mu\mu}^{\text{Obs}} = 0.99^{+0.42}_{-0.07} \text{ (stat.)} \pm 0.17 \text{ (syst.) ps}$$

 $\tau(B_{s,L}) = 1.427 \ ps$ $\tau(B_{s,H}) = 1.616 \ ps$

- The result is consistent with the SM prediction.
- Value smaller than the other measurements, which will lower the world average.

- B rare decay is a sensitive probe to new physics
- Several B anomalies observed in the previous measurements
- $B^0 \rightarrow K^* \mu \mu$ angular measurement by CMS reported
 - Among the most precise measurements of the angular observables
 - Similar effect as LHCb observed in P2 and P5' parameter
- $B_s \rightarrow \mu \mu$ lifetime measurement by ATLAS reported
 - The world average will be more consistent with SM prediction
- More interesting results regarding the rare decays are on the way. Stay tuned

Back up

Projections (1)

CMS

Projections (2)

CMS

Projections (3)

CM

Fit Setup

	Parameter	Range 2016 2017 2018					
		2010	2017	2010	- τ		
	F_L	$[0, 1] \\ [-1, 1] \\ [-0.5, 0.5]$					
	P_1						
Signal angular pdf	P_2						
	P_3	[-0.5, 0.5]					
	P'_4	$[-\sqrt{2},\sqrt{2}]$					
	P'_5	$[-\sqrt{2},\sqrt{2}]$					
	P_6'	$\left[-\sqrt{2},\sqrt{2}\right]$					
	P_8'	$[-\sqrt{2}, \sqrt{2}]$					
	Fs	[0, 1]					
	a_S^i	[-1,1]					
Signal mass pdf RT	$\sigma_{RT1}, \sigma_{RT2}, \alpha_{RT1}, \sigma_{RT1}$	constr. to MC	constr. to MC	constr. to MC			
	$\alpha_{RT2}, n_{RT1}, n_{RT2}, f^{KT}$	consti. to MC	consti. to MC	consti. to Mic			
	m _{RT}	free	free free		sa		
Signal mass pdf WT	$(m_{WT}-m_{RT}), \sigma_{WT}, \alpha_{WT1}, \alpha_{WT2},$	constr. to MC	constr. to MC	constr. to MC			
	n_{WT1}, n_{WT2}, f^{WT}	consti. to MC	consti. to MC	consti. to MC	ρ		
Mistag corr. factor	R	constr. to MC	constr. to MC	constr. to MC	ars		
Bkg mass shape	slope	free	free	free	["		
Bkg angular shape	various <i>c</i> _i	fixed from sb	fixed from sb	fixed from sb]		
Yields	Y_S, Y_B	free	free	free			

Systematic Uncertainties

Can be grouped into 3 categories:

dependent on the data or MC statistics:

evaluated by propagating the related statistical uncertainty to the final result

due to possible bias given assumptions/choices in the fit model:

evaluated using alternative assumption(s) in the fit model and taking the difference wrt the nominal result as uncertainty

fit bias: bias introduced by the fit procedure applied in realistic conditions:

evaluated as the difference between the average of the results to signal+bkg sub-samples with data-like stat and the results of the angular fit to the MC sample

Systematic Uncertainties Summary

- Amount of the various contributions varies depending on the q² and the parameter under consideration
- Sideband and MC statistics are the dominant systematics on P₅' at low q²
- Measurement is still statistically limited

Source	F_L (×10 ⁻³)	$P_1 (\times 10^{-3})$	$P_2 (\times 10^{-3})$	$P_3 (\times 10^{-3})$	$P'_4~(imes 10^{-3})$	$P_{5}'(imes 10^{-3})$	$P_{6}'(imes 10^{-3})$	$P_8' (imes 10^{-3})$
Efficiency modeling	1-9	7-44	3-11	0-46	3-87	2-13	5-16	6-28
Fit bias	1-2	0-6	2-62	1-12	9-54	0-8	0-3	0-24
Mistag fraction	0-2	1-4	1-3	0-14	1-5	1-10	0-4	0-12
Signal mass resolution	1-10	1-12	2-11	1-21	4-23	0-12	0-5	0-16
Signal mass shape	0-9	1-22	0-10	3-70	2-16	1-15	0-7	0-91
Background mass shape	0-5	1-16	1-13	0-8	6-30	1-13	0-7	1-10
MC statistics	1-10	5-31	1-64	4-45	5-47	4-22	4-13	10-59
Background statistics	2-6	4-20	1-21	2-16	6-37	4-24	3-9	5-23
Data/MC differences	8-8	0-23	0-16	0-13	0-11	0-13	0-3	0-30
Partially reco bkg	1-1	1-1	0-0	1-1	25-25	0-0	0-0	2-2
Resonant bkg	0-1	0-6	z. Wang L	HCP2824	0-30	0-11	0-5	0-12

Results of Parameters

