

WARWICK

UNIVERSITY OF WARWICK

AMP

Rare and forbidden decays at LHCb

Fernando Abudinén

on behalf of the LHCb collaboration

<u>12th Edition of the Large Hadron</u> <u>Collider Physics Conference</u>

LH

Rare and forbidden decays

Decays of *c* and *b* hadrons occurring via penguin or box diagrams in the Standard Model

- FCNC processes, suppressed by small size of off-diagonal CKM elements and GIM mechanism
- Sensitive to non-Standard Model contributions
- Offer multiple tests of the SM (challenge is $\mathcal{B} \leq 10^{-6}$)
- Can also search for processes forbidden in SM

This talk

Recent results exploiting run I + II data set (9 fb^{-1}) on searches for

- Nonresonant $B_c^+ \rightarrow \pi^+ \mu^+ \mu^-$ decays <u>EPJ.C84(2024)468</u>
- $B_{(s)}^{*0} \rightarrow \mu^+ \mu^-$ decays (new!)
- $B_s^0 \to \phi \,\mu^{\pm} \tau^{\mp}$ decays (new!)

LHCb-CONF-2024-003

LHCb-PAPER-2024-006

Examples from this talk

Search for $B_c^+ \to \pi^+ \mu^+ \mu^-$ decays

EPJ.C84(2024)468

- Nonresonant decays occur via annihilation plus virtual γ/Z radiation
- Currently no theoretical predictions
- Studies of annihilation contributions only for B^{\pm} EPJ.C41.173(2005 JPCS.1690.012162
- First study of pure annihilation process for B_c^+ meson decays

Analysis Strategy

- Reconstruct $B_c^+ \to \pi^+ \mu^+ \mu^-$ decays
- Use a BDT and PID info against combinatorial background
- BDT trained to be performant irrespective of $m(\mu^+\mu^-)$
- Sort candidates into $q^2 = m(\mu^+\mu^-)^2$ intervals excluding J/ψ and $\psi(2S)$ regions
- Perform maximum-likelihood fit to $m(B_c^+)$ in each q^2 interval

Search for $B_c^+ \to \pi^+ \mu^+ \mu^-$

- Normalise to $B_c^+ \to J/\psi(\mu^+\mu^-)\pi^+$ decays
- Efficiencies from simulation with data/MC corrections

$$R_{\pi^{+}\mu^{+}\mu^{-}/J/\psi\pi^{+}} \equiv \frac{\mathcal{B}(B_{c}^{+} \to \pi^{+}\mu^{+}\mu^{-})}{\mathcal{B}(B_{c}^{+} \to J/\psi\pi^{+})}$$
$$= \frac{N_{\pi^{+}\mu^{+}\mu^{-}}}{N_{J/\psi\pi^{+}}} \cdot \frac{\varepsilon_{J/\psi\pi^{+}}}{\varepsilon_{\pi^{+}\mu^{+}\mu^{-}}} \cdot \frac{\mathcal{B}(J/\psi \to \mu^{+}\mu^{-})}{\mathcal{B}(J/\psi \to \mu^{+}\mu^{-})} \text{Known}$$

- Nonresonant $B_c^+ \to \pi^+ \mu^+ \mu^-$ simulated assuming a phasespace distribution
- Obtain model-independent results by assigning systematic uncertainty due to efficiency spread (largest syst. uncty.)
- Consider two extreme cases:
 - Dimuon system forms scalar state (unpolarised)
 - Dimuon system forms vector state (longitudinal pol.)
 - \Rightarrow Difference considered as systematic uncertainty

Search for $B_c^+ \to \pi^+ \mu^+ \mu^-$

Fit includes signal and combinatorial background

Separate q^2 bins

 \Rightarrow No signal observed in any of the q^2 bins

All q^2 bins combined

• Data

25

LHCb

Search for $B_c^+ \to \pi^+ \mu^+ \mu^-$

- Systematic uncertainties included as Gaussian constraints in the fits
- Limit on branching fraction obtained for each q² interval and for all intervals combined following Feldman-Cousins prescription
- First limit on the nonresonant decay mode!

q^2 interval	$R_{\pi^+\mu^+\mu^-/J/\psi\pi^+}$	UL at 90% CL	UL at 95% CL	
$0.1 < q^2 < 1.1 \mathrm{GeV}^2$	$(-0.2^{+}_{-3.5}^{+}_{-0.7}) \times 10^{-5}$	1.3×10^{-4}	2.1×10^{-4}	
$1.1 < q^2 < 8.0 \text{GeV}^2$	$(1.5^{+}_{-})^{7.9}_{-})^{+}2.3}_{-}\times10^{-5}$	$1.7{ imes}10^{-4}$	2.2×10^{-4}	
$11.0 < q^2 < 12.5 {\rm GeV}^2$	$(-28.4^{+10.5}_{-16.1}) \times 10^{-5}$	0.6×10^{-4}	$0.7{ imes}10^{-4}$	
$15.0 < q^2 < 35.0 {\rm GeV}^2$	$(0.2^{+11.5}_{-10.5}) \times 10^{-5}$	1.9×10^{-4}	2.3×10^{-4}	Limit for all q^2
All	$(-3.0^{+15.0}_{-13.8}) \times 10^{-5}$	2.1×10^{-4}	2.7×10^{-4}	intervals combined

Update of $\mathcal{R}_{\psi(2S)/J/\psi}$ ratio

- Ratio of branching fractions between resonant modes used as cross check in $B_c^+ \rightarrow \pi^+ \mu^+ \mu^-$ search
- Performed dedicated optimisation to update previous measurement PRD.87.071103
- For optimised selection

 $B_c^+ \rightarrow \psi(2S)\pi^+$ fit $\frac{\mathcal{B}(B_c^+ \to \psi(2S)\pi^+)}{\mathcal{B}(B_c^+ \to J/\psi\pi^+)} =$ LHCb • Data 100 Candidates per 10 MeV **—** Total fit 9 fb⁻¹ $B_c^+ \rightarrow \psi(2S)\pi^+$ 80 $\cdots B_c^+ \rightarrow \psi(2S)K^+$ $0.254 \pm 0.018 \,(\text{stat}) \pm 0.003 \,(\text{syst}) \pm 0.005 \,(\text{BF})$ $\blacksquare B_c^+ \rightarrow \psi(2S)\rho^+$ 60 ----- Combinatorial 40 Uncertainty on \mathcal{B} of \Rightarrow World's best measurement leptonic decays 20 EPJ.C84(2024)468 6200 6400 $m(\pi^+\mu^+\mu^-)$ [MeV]

Normalisation mode fit

6400

 $m(\pi^+\mu^+\mu^-)$ [MeV]

Data

— Total fit

 $B_c^+ \rightarrow J/\psi \pi^+$

 $\cdots B_c^+ \rightarrow J/\psi K^+$

----- $B_c^+ \rightarrow J/\psi \rho^+$

····· Combinatorial

6600

6600

2000 F LHCb

6200

1800 ₽ 9 fb⁻¹

1600

1400

1200

1000 800 600

400

200 0

Candidates per 10 MeV

Search for $B_{(s)}^{*0} \rightarrow \mu^+ \mu^-$ decays

- $B_{(s)}^{*0} \rightarrow \mu^+ \mu^-$ decays can provide constraints on Wilson coeffs. complementary to $B_{(s)}^0 \rightarrow \mu^+ \mu^-$ decays \Rightarrow not helicity suppressed
- Expect $\mathcal{B}(B_s^{*0} \rightarrow \mu^+\mu^-) \lesssim 10^{-11}$ within SM <u>PRL.116.141801</u>
- High production rates of $B_{(s)}^{*0}$, but high background level for decays at collision point
- Most promising approach <u>EPJ.C82(2022)459</u>
- \Rightarrow Search within $B_c^+ \rightarrow B_{(s)}^{*0}\pi^+ \rightarrow \mu^+\mu^-\pi^+$ decay chain
- \Rightarrow Exploit displaced vertex signature to suppress background
- \Rightarrow Demonstrated in recent search for $D^{*0} \rightarrow \mu^+\mu^-$ decays <u>EPJ.C83(2023)666</u>
- No nonresonant $B_c^+ \rightarrow \pi^+ \mu^+ \mu^-$ background as previously shown

Search for $B_{(s)}^{*0} \rightarrow \mu^+ \mu^-$ decays

Analysis Strategy

- Reconstruct $B_c^+ \to \pi^+ \mu^+ \mu^-$ decays
- Use BDT, angular info and PID against combinatorial bkg.
- Same BDT as for nonresonant decays, but dedicated selection
- Perform 2D ML fit to $m(\mu^+\mu^-)$ and $m(\pi^+\mu^+\mu^-)$
- Normalise to $B_c^+ \to J/\psi(\mu^+\mu^-)\pi^+$ decays
- Efficiencies from sim. corrected for data/MC discrepancies

$$\begin{aligned} \mathcal{R}_{B_{(s)}^{*0}(\mu^{+}\mu^{-})\pi^{+}/J/\psi\pi^{+}} &\equiv \frac{\mathcal{B}(B_{c}^{+} \to B_{(s)}^{*0}(\mu^{+}\mu^{-})\pi^{+})}{\mathcal{B}(B_{c}^{+} \to J/\psi\pi^{+})} \\ &= \frac{N_{B_{(s)}^{*0}\pi^{+}}}{N_{J/\psi\pi^{+}}} \left[\frac{\varepsilon_{J/\psi\pi^{+}}}{\varepsilon_{B_{(s)}^{*0}\pi^{+}}} \right] \frac{\text{Known } \mathcal{B}}{\mathcal{B}(J/\psi \to \mu^{+}\mu^{-})} \end{aligned}$$

Normalisation mode fits

LHCb-CONF-2024-003

Search for $B_{(s)}^{*0} \rightarrow \mu^+ \mu^-$ decays

• Fit includes signal $B_c^+ \to B^{*0}(\mu^+\mu^-)\pi^+$

and $B_c^+ \to B_s^{*0}(\mu^+\mu^-)\pi^+$ decays, and combinatorial bkg.

No statistical dependency between signal yields

Number of events in 2D signal regions consistent with background-only expectation

Signal mode fit HCb preliminary Candidates per 10 MeV/ c^3 Data Total fit ······ Combinatorial 25 $B_c^+ \rightarrow B_s^{*0}(\mu^+\mu^-) \pi^+$ $B_c^+ \rightarrow B^{*0}(\mu^+\mu^-) \pi^+$ 10 6200 6400 6600 $m(\pi^{+}\mu^{+}\mu^{-})$ [MeV/c²] LHCb preliminary Candidates per 5 MeV/c² 9 fb⁻¹ 15 10 5300 5500 5400 $m(\mu^{+}\mu^{-})$ [MeV/ c^{2}] LHCb-CONF-2024-003

 \Rightarrow No signal observed for both decay modes

Search for
$$B_{(s)}^{*0} \to \mu^+ \mu^-$$
 decays

- Systematic uncertainties included as Gaussian constraints in signal mode fit
- Largest systematic due to data/MC discrepancies in muon impact parameters (but negligible impact)
- Results from fit to data

 $\mathcal{R}_{B^{*0}(\mu^+\mu^-)\pi^+/J/\psi\pi^+} = (-0.44^{+1.99}_{-1.12}) \times 10^{-5}$ $\mathcal{R}_{B^{*0}_s(\mu^+\mu^-)\pi^+/J/\psi\pi^+} = (0.43^{+2.45}_{-1.41}) \times 10^{-5}$

⇒ Upper limit on branching fraction based on Feldman-Cousins method

 $\mathcal{R}_{B^{*0}(\mu^+\mu^-)\pi^+/J/\psi\pi^+} < 3.8 (5.2) \times 10^{-5} \text{ at } 90 (95)\% \text{ CL}$ $\mathcal{R}_{B^{*0}_s(\mu^+\mu^-)\pi^+/J/\psi\pi^+} < 5.0 (6.3) \times 10^{-5} \text{ at } 90 (95)\% \text{ CL}$

LHCb-CONF-2024-003

 \Rightarrow Assuming (no measurement yet)

$$\frac{\mathcal{B}(B_c^+ \to B_s^* \pi^+)}{\mathcal{B}(B_c^+ \to J/\psi \pi^+)} \approx \left| \frac{V_{cs}}{V_{cb}} \right|^2 \approx 0.6 \cdot 10^3 \Longrightarrow \mathcal{B}(B_s^{*0} \to \mu^+ \mu^-) \lesssim 10^{-7}$$

Confidence belts based on FC prescription

Search for $B_s^0 \to \phi \, \mu^{\pm} \tau^{\mp}$

- Lepton flavour violating decay
- Possible in SM with neutrino oscillation ($\mathcal{B} \leq 10^{-50}$)
- First search for this decay

Analysis Strategy

- Reconstruct $B_s^0 \to \phi \quad \mu^{\pm} \tau^{\mp}$ $\downarrow K^+ K^- \downarrow 3\pi^{\pm}(\pi^0) \nu_{\tau}$
- Reconstruct B_s^0 mass using kinematic fit constraining τ direction (using collision point, $\phi \mu^{\pm}$ vertex and $3\pi^{\pm}$ vertex), τ mass and ν_{τ} mass
- Use a BDT against combinatorial background
- Use a second BDT against partially reconstr. *b*-hadron decays
- Use PID info and veto background from D decays

Search for
$$B_s^0 \to \phi \, \mu^{\pm} \tau^{\mp}$$

- Normalisation mode is $B_s^0 \to \phi(K^+K^-) \psi(2S)(J/\psi \pi^+\pi^-)$ $\downarrow \mu^+\mu^-$
- Relative efficiencies from simulation with data/MC corrections
- Largest systematic uncertainty originates from known branching fractions

$$N_{\rm exp} = \frac{\mathcal{B}(\tau^- \to \pi^- \pi^+ \pi^- \nu_{\tau})}{\mathcal{B}(B_s^0 \to \psi(2S)\phi)\mathcal{B}(\psi(2S) \to J/\psi\pi^+\pi^-)\mathcal{B}(J/\psi \to \mu^+\mu^-)} \varepsilon_{\rm rel.,3\pi} N_i(\psi(2S)\phi) \times \mathcal{B}(B_s^0 \to \phi\mu^+\tau^-)$$

LHCb-PAPER-2024-006

Search for $B_s^0 \to \phi \, \mu^{\pm} \tau^{\mp}$

Signal mode fit

- Partially reconstructed *b*-hadron decays (dominant background) modelled by smooth distribution
- ⇒ Choice of model treated as discrete nuisance parameter
- Misidentified $B \to \overline{D}\phi \pi^+_{\to\mu^+}$ decays (peaking) modelled and constrained using info from simulation, control data and knowledge on inclusive $\overline{D} \to \pi^- \pi^+ \pi^- X$ decays from BESIII PRD107(2023)032002

PRD108(2023)032002

 \Rightarrow No significant signal observed in any fit configuration

Search for $B_s^0 \to \phi \, \mu^{\pm} \tau^{\mp}$

- Systematic uncertainties included as Gaussian constraints in signal fit
- No excess observed over background-only hypothesis
- Upper limits based on Feldman-Cousins prescription

$$\begin{split} &\mathcal{B}(B^0_s \!\to\! \phi \mu^{\pm} \tau^{\mp}) < 1.0 \times 10^{-5} \text{ at } 90\% \text{ CL} \\ &\mathcal{B}(B^0_s \!\to\! \phi \mu^{\pm} \tau^{\mp}) < 1.1 \times 10^{-5} \text{ at } 95\% \text{ CL} \end{split}$$

- \Rightarrow First upper limit on this decay mode
- \Rightarrow Comparable sensitivity with other $b \rightarrow s \tau \mu$ searches

Summary and outlook

- Extremely rare and forbidden decays offer multiple constraints to non-SM contributions
- Presented three new first searches for
 - Nonresonant $B_c^+ \rightarrow \pi^+ \mu^+ \mu^-$ decays <u>EPJ.C84(2024)468</u>
 - $B_{(s)}^{*0} \rightarrow \mu^+ \mu^-$ decays New for
 - $B_s^0 \to \phi \ \mu^{\pm} \tau^{\mp} \text{ decays} \ LHCP!$
- Other recent searches (not covered in this talk)
 - $B \to D\mu^+\mu^-$ decays
 - $\Lambda_c^+ \to p \mu^+ \mu^-$ decays
 - $B_s^0 \to \mu^+ \mu^- \gamma$ decays

<u>JHEP02(2024)032</u> <u>LHCb-PAPER-2024-005</u> <u>LHCb-PAPER-2023-045</u>

LHCb-CONF-2024-003

LHCb-PAPER-2024-006

- Still to come (exploiting run I + II):
 - $\Sigma^+ \rightarrow p \ \mu^+ \mu^-$ (LHCB-CONF-2024-002), $\tau \rightarrow 3\mu$, ...
- LHCb Upgrade I (runs 3 4) started taking data (expect ~50 fb⁻¹ by 2032) and will continue making measurements

Backup

The LHCb experiment

- Single-arm forward spectrometer optimised for studies of beauty and charm hadrons
- Large cross sections: $\sigma_{b\bar{b}} \approx 280 (500) \,\mu b$, $\sigma_{c\bar{c}} \approx 1500 (3000) \,\mu b$ at 7(13) TeV

17

JHEP10(2015)172

JHEP03(2016)159

Searches for $B_{(s)}^0 \to \mu^+ \mu^-$ decays

- Helicity suppressed FCNC, precise SM predictions
- $\mathcal{B}(B_s^0 \to \mu^+ \mu^-)$ measured by ATLAS, CMS and LHCb
- Statistically limited, largest systematic uncertainty originates from fragmentation fraction f_s/f_d <u>PRD.104.032005</u>
- $B^0 \rightarrow \mu^+ \mu^-$ still unobserved, but in reach

Search for $B_c^+ \to \pi^+ \mu^+ \mu^-$ decays

Search for $B \rightarrow D\mu^+\mu^-$ decays

- Nonresonant signal decays selected in the range $q^2 < 8.0 \text{ GeV}^2$ to avoid all charmonium
- Charmonium region selected narrowly around J/ψ
- Yields for signal and backgrounds vary freely
- Use $B^0 \rightarrow J/\psi(\mu^+\mu^-) K^*(K^+\pi^-)$ for normalisation
- Keep separate fragmentation fraction f_c/f_u <u>PRD.100.112006</u>

$$\frac{f_c}{f_u} \cdot \mathcal{B} \left(B_c^+ \to D_s^+ J/\psi \right) = (1.63 \pm 0.15 \pm 0.13) \times 10^{-5}$$
$$\frac{\mathcal{B} \left(B_c^+ \to D_s^{*+} J/\psi \right)}{\mathcal{B} \left(B_c^+ \to D_s^+ J/\psi \right)} = 1.91 \pm 0.20 \pm 0.07$$
$$\Gamma_{\pm\pm}/\Gamma_{\text{tot}} = 0.50 \pm 0.11$$

 \Rightarrow World's best results

 $m(D_c^+J/\psi)$ [MeV/c²]

Search for $B \rightarrow D\mu^+\mu^-$ decays

No signal observed for all other modes 16日 9 fb⁻¹ Branching fraction Upper limits 90% CL 95% CL $\mathcal{B}\left(B^0 \to \overline{D}{}^0 \mu^+ \mu^-\right)$ 4.0×10^{-8} 5.1×10^{-8} $\mathcal{B}(B^+ \to D_s^+ \mu^+ \mu^-)$ 2.4×10^{-8} 3.2×10^{-8} $\mathcal{B}\left(B_s^0 \to \overline{D}{}^0 \mu^+ \mu^-\right)$ 1.2×10^{-7} 1.6×10^{-7} 5000 5200 $f_c/f_u \cdot \mathcal{B} \left(B_c^+ \to D_s^+ \mu^+ \mu^- \right) \quad 7.5 \times 10^{-8} \quad 9.6 \times 10^{-8}$ 9.6×10^{-7} 1.1×10^{-6} $\mathcal{B}(B^0 \to \overline{D}{}^0 J/\psi)$ $\mathcal{B}(B^+ \to D^+_s J/\psi)$ 2.8×10^{-7} 3.5×10^{-7} $\mathcal{B}\left(B_s^0 \to \overline{D}{}^0 J/\psi\right)$ 1.0×10^{-6} 1.5×10^{-6} LHCb

- \Rightarrow First limits or improvements \ge 3 orders of magnitude
- SM predictions $\sigma(10^{-5} 10^{-8})$

PRD65.2002.037504 NP.B612.2001.25 PTEP.2020.053B07

Search for $\Lambda_c^+ \to p \mu^+ \mu^-$ decays

- SM predictions: $\begin{array}{l} \sigma(10^{-8}) \text{ (short distance)} \\ \sigma(10^{-6}) \text{ (long distance)} \end{array}$ JHEP09(2021)208
- Search for nonresonant decays in ranges
 - $m(\mu^+\mu^-) < 508 \text{ MeV}/c^2$
 - $m(\mu^+\mu^-) > 1060 \text{ MeV}/c^2$
- Normalise to $\Lambda_c^+ \to \phi(\mu^+\mu^-) p$ decays
- No excess observed over background-only hypothesis
- ⇒ Set upper limit extrapolated to full $m(\mu^+\mu^-)$ range (assuming phase-space distribution)

$$\mathcal{B}(\Lambda_c^+ \to p \mu^+ \mu^-) < 7.3 \ (8.2) \times 10^{-8} \text{ at } 90\% \ (95\%) \text{ CL}$$

 \Rightarrow Best upper limit on this decay mode

LHCb-PAPER-2024-005

Search for $B_s^0 \to \mu^+ \mu^- \gamma$ decays

- No helicity suppression wrt. $B_s^0 \rightarrow \mu^+ \mu^-$ decays, compensating for QED vertex
- SM prediction $\sigma(10^{-9})$ <u>JHEP11(2017)184</u>
- First search as part. reconstructed bkg. for <u>PRL128.041801</u> $B_s^0 \rightarrow \mu^+ \mu^-$ decays at $m(\mu^+ \mu^-) > 4.9 \text{ GeV}/c^2$
- Reconstruct γ and perform search in three q^2 bins
- Normalise to $B_s^0 \to J/\psi \eta(\gamma \gamma)$ decays
- No excess observed over background-only hypothesis

$$\Rightarrow \qquad \mathcal{B}(B_{s}^{0} \to \mu^{+} \mu^{-} \gamma)_{\mathrm{I}} < 3.6 (4.2) \times 10^{-8} \\ \mathcal{B}(B_{s}^{0} \to \mu^{+} \mu^{-} \gamma)_{\mathrm{II}} < 6.5 (7.7) \times 10^{-8} \\ \mathcal{B}(B_{s}^{0} \to \mu^{+} \mu^{-} \gamma)_{\mathrm{III}} < 3.4 (4.2) \times 10^{-8} \\ \mathcal{B}(B_{s}^{0} \to \mu^{+} \mu^{-} \gamma)_{\mathrm{I, with } \phi \text{ veto}} < 2.9 (3.4) \times 10^{-8} \\ \mathcal{B}(B_{s}^{0} \to \mu^{+} \mu^{-} \gamma)_{\mathrm{comb.}} < 2.5 (2.8) \times 10^{-8} \\ \mathcal{LHCb-PAPER-2023-045}$$

23

Overview of rare decays

Expected level of suppression

10^{-5}	• Radiative $b \rightarrow s\gamma$		
10^{-6}	• Semileptonic $b \rightarrow s\ell\ell$		
10 ⁻⁹	• Helicity suppressed $B_s^0 \rightarrow \mu^+ \mu^-$		
10 ⁻¹²	• $K_{\rm s}^0 \rightarrow \mu^+ \mu^- ({\rm s} \rightarrow d)$		
	• $D^0 \rightarrow \mu^+ \mu^-$, long distance $(c \rightarrow u)$		
10^{-19}	• $D^{(*)0} \rightarrow \mu^+ \mu^-$, short distance $(c \rightarrow u)$		
10^{-30}	Baryon number violation		
10^{-50}	Lepton flavor violation		