Read-out developments for the

LHCP 2024, Boston

Jeroen Hegeman

Setting the context

- This will focus on the HL-LHC upgrades of the large LHC experiments, with an attempt to `place everything in context'
 - This naturally leads to a look at the ECFA DRD7 efforts

- am grateful to the experts who shared their thoughts with me in preparation of this talk
 - The facts come from them, and from various publications
 - Interpretations and opinions were added by me (Misinterpretations and misguided opinions will be mine too)

CERN-LHCC-2013-019

CERN-LHCC-2021-007

CERN-LHCC-2021-012

These developments are all driven by one thing Continuing our search for smaller needles in larger haystacks

- More (rare events) and (more rare) events
- More statistics → more luminosity
 And really: <u>higher instantaneous luminosity</u>
- More granularity → more channels
- Bottom line: more data, faster
 → Larger events at a higher rate
 → More complex online reduction required

P.S. The detector read-out is by no means the biggest challenge here.

Traditional HEP experiment trigger-DAQ architecture

Phase-2 ATLAS

Phase-2 CMS

Traditional HEP experiment trigger-DAQ architecture

Phase-2 ATLAS

The concepts involved have not changed fundamentally for a while now:

data read-out, event building, event filtering and storage

Phase-2 CMS

- 5

Zoom on the front-end

- The Phase-1 Versatile Link: first general front-end optical link solution (4.8 Gb/s, 10 kGy)
 - Combines fast control and slow control (downlink), as well as DAQ (uplink)
 - Pair of front-end ASICs (GBT and GBT-SCA) and front-end optics, plus selection guides and application notes for implementation with COTS back-end optics

Versatile Link

- The Phase-1 Versatile Link: <u>first general</u> front-end optical link solution (4.8 Gb/s, 10 kGy)
 - Combines fast control and slow control (downlink), as well as DAQ (uplink)
 - Pair of front-end ASICs (GBT and GBT-SCA) and front-end optics, plus selection guides and application notes for implementation with COTS back-end optics
- Phase-2 (i.e., HL-LHC) brings the Versatile Link+
 - Supercharged performance: 2.56 Gb/s downlink, 10.24 Gb/s uplink, 1 MGy TID
 - Front-end ASIC (IpGBT) and optics (VTRX+), plus validated commercial back-end optics
 - Unique challenge: Pairing custom and commercial components over the full front-end lifetime

- The Phase-1 Versatile Link: <u>first general</u> front-end optical link solution (4.8 Gb/s, 10 kGy)
 - Combines fast control and slow control (downlink), as well as DAQ (uplink)
 - Pair of front-end ASICs (GBT and GBT-SCA) and front-end optics. plus selection guides and application notes for implementation with COTS back-end optics
- Phase-2 (i.e., HL-LHC) brings the Versatile Link+
 - Supercharged performance: 2.56 Gb/s downlink, 10.24 Gb/s uplink, 1 MGy TID
 - Front-end ASIC (IpGBT) and optics (VTRX+), plus validated commercial back-end optics
 - Unique challenge: Pairing custom and commercial components over the full front-end lifetime
- Next-generation R&D is already ongoing Demonstrator ASIC (DART28) driving Silicon Photonics for a 100Gb/s radiation tolerant front-end link Target: compatible with COTS back-end solutions

The enormous growth in performance of these optical serial links was made possible by the <u>adoption</u> of industry tools and techniques, and their <u>adaptation</u> to our specific use case.

HEP communications ASICs and on-detector optics are nowadays developed by dedicated collaborations of specialists in institutes and universities, developing <u>common components</u> and <u>giving support</u> to users. Small-scale link developments are no longer viable.

 Next-generation R&D is already ongoing Demonstrator ASIC (DART28) driving Silicon Photonics for a 100Gb/s radiation tolerant front-end link Target: compatible with COTS back-end solutions

Zoom on the back-end

The back-end environment throughout the years

- Originally, LHC off-detector electronics were predominantly VME (6U and 9U), and some CompactPCI
 - Boards were relatively sparsely populated
 - Layout dominated by peripherals
- The Phase-1 upgrade saw a trend towards MicroTCA
 - Significant increase in logic density and component miniaturisation made smaller boards possible
 - Access to peripherals became a challenge
- The <u>Phase-2 upgrade introduced ATCA</u> as crate system
 - Larger boards, and more power per slot
 - However: modern FPGAs require multiple supply voltages, high-speed lanes introduce routing constraints
 - Board design has become a multi-faceted engineering challenge → Powering, cooling, airflow, noise, vibration, plus the actual electronics part...
 - ATCA has actually already gone out of fashion in the TelCo industry (and higher link speeds have rendered the backplane obsolete)

- Originally, LHC off-detector electronics were predominantly VME (6U and 9U), and some CompactPCI
 - Boards were relatively sparsely populated
 - Layout dominated by peripherals
- The Phase-1 upgrade saw a trend towards MicroTCA
 - Significant increase in logic density and component miniaturisation made smaller boards possible
 - Access to peripherals became a challenge
- The <u>Phase-2 upgrade introduced ATCA</u> as crate system
 - Larger boards, and more power per slot
 - However: modern FPGAs require multiple supply voltages, high-speed lanes introduce routing constraints
 - Board design has become a multi-faceted engineering challenge → Powering, cooling, airflow, noise, vibration, plus the actual electronics part...
 - ATCA has actually already gone out of fashion in the TelCo industry (and higher link speeds have rendered the backplane obsolete)

VME was likely the last standard that was adopted `CERN-wide'

HEP experiments don't profit from most of the advanced features of these standards

The back-end — Some out-of-the-crate thinking

- Only CMS adopted ATCA for all Phase-2 back-end, read-out, and L1 trigger boards
- ATLAS uses ATCA for L1 trigger
- ALICE, ATLAS, and LHCb all developed back-ends that live in the DAQ read-out/builder unit
 - Closest integration with COTS hardware so far
 - May be the best fit for a crate-less future approach

The collaborative back-end

State-of-the-art hardware development for trigger-DAQ has outgrown the traditional HEP development model where single institutes deliver an ASIC/board

- Modern FPGAs require more and more care in powering, decoupling, signal routing
- High-speed serial links require more and more specialist design, routing, and even testing
- High power and signal density requires dedicated PCB design experise
- Many components (incl. the PCBs) have become `almost too expensive to prototype' → Split design into functional parts for prototyping/proof-of-principle (Makes for easier sharing too.)
- consortia of universities and institutes
 - Expert groups can focus on aspects of functional design, interfaces, mechanics, cooling, etc. • Requires a change in focus when presenting our contributions to our funding agencies

Board development (e.g., Apollo, FELIX, PCIe40, Serenity) nowadays often done by

Back-end firmware design choices Arria 10 FPGA **Qsys Generated Endpoint ALICE and LHCb** On chip memory super-page 8 kByte/pag

- Standardised on a single hardware device
- Publishing Ustomised this with detector-specific firmware embedded in a common framework

- Chose a single hardware device
- Customised this with flexible configuration

- Chose a hardware form factor, and allowed detectorspecific back-end hardware implementations
- Delivers common firmware for all central interfaces

Back-ends become (pre)processors?

- FPGAs used to scale predictably:
 - More of the same blocks
 - Faster I/O
 - → Facilitated design evolution

Back-ends become (pre)processors?

- FPGAs used to scale predictably:
 - More of the same blocks
 - Faster I/O
 - → Facilitated design evolution
- FPGA have now become `Adaptive SoCs'
 - Have to learn how to best use these for HEP purposes
 - Data reduction? Data reformatting? → Will have effects on both trigger and DAQ

Focus on the future

The global trigger-DAQ strategy may be about to change

<u>RD7: electronics and on-detector processing</u>

- Some topics directly influence DAQ design
- Others indirectly affect the trigger-DAQ architecture

		DRDT	<	2030	2030-2035	2035- 2040	2040-2045	> 2045
Data	High data rate ASICs and systems	7.1						
densitv	New link technologies (fibre, wireless, wireline)	7.1						Ŏ • (
ucinsity	Power and readout efficiency	7.1						Ŏ o (
Intelligence	Front-end programmability, modularity and configurability	7.2						
on the	Intelligent power management	7.2						Ŏ (
detector	Advanced data reduction techniques (ML/AI)	7.2						Ŏ (
4D-	High-performance sampling (TDCs, ADCs)	7.3						
	High precision timing distribution	7.3						
tecnniques	Novel on-chip architectures	7.3			Ö			Ŏ (
	Radiation hardness	7.4						Ŏ (
environments	Cryogenic temperatures	7.4						Ŏ (
and longevity	Reliability, fault tolerance, detector control	7.4						
	Cooling	7.4						Ŏ • (
Emerging technologies	Novel microelectronic technologies, devices, materials	7.5						
	Silicon photonics	7.5						Ŏ (
	3D-integration and high-density interconnects	7.5						Ŏ (
	Keeping pace with, adapting and interfacing to COTS	7.5						Ŏ • (

Important to meet several physics goals

Output Desirable to enhance physics reach

R&D needs being met

The global trigger-DAQ strategy may be about to change

RD7: electronics and on-detector processing

- Some topics directly influence DAQ design
- Others indirectly affect the trigger-DAQ architecture

		DRDT	< 7	2030		2030	2035	2035- 2040	2040-2045	> 2045
Data	High data rate ASICs and systems	7.1								
densitv	New link technologies (fibre, wireless, wireline)	7.1								
	Power and readout efficiency	7.1								
Intelligence	Front-end programmability, modularity and configurability	7.2								
on the	Intelligent power management	7.2				•				Ö
detector	Advanced data reduction techniques (ML/AI)	7.2							Ó	Ŏ
	High-performance sampling (TDCs, ADCs)	7.3				•				
4U- toshniquos	High precision timing distribution	7.3								
tecnniques	Novel on-chip architectures	7.3			Ŏ	Ŏ				
Extrame	Radiation hardness	7.4								
environments	Cryogenic temperatures	7.4				-				Ŏ
and longevity	Reliability, fault tolerance, detector control	7.4								
	Cooling	7.4				• *				
Emerging technologies	Novel microelectronic technologies, devices, materials	7.5								
	Silicon photonics	7.5								
	3D-integration and high-density interconnects	7.5								Ŏ
	Keeping pace with, adapting and interfacing to COTS	7.5								

Organization Desirable to enhance physics reach

R&D needs being met

The global trigger-DAQ strategy may be about to change

RD7: electronics and on-detector processing

- Some topics directly influence DAQ design
- Others indirectly affect the trigger-DAQ architecture

		DRDT	< 2030	2030-2035	2040	2040-2045	> 2045
Data density	High data rate ASICs and systems	7.1					
	New link technologies (fibre, wireless, wireline)	7.1					
	Power and readout efficiency	7.1					
Intelligence	Front-end programmability, modularity and configurability	7.2					
on the	Intelligent power management	7.2					
detector	Advanced data reduction techniques (ML/AI)	7.2					
	High-performance sampling (TDCs, ADCs)	7.3					
4D- techniques	High precision timing distribution	7.3					
	Novel on-chip architectures	7.3					
Extromo	Radiation hardness	7.4					
environments and longevity	Cryogenic temperatures	7.4					Ŏ (
	Reliability, fault tolerance, detector control	7.4					
	Cooling	7.4					Ó 🌒 🌔
Emerging technologies	Novel microelectronic technologies, devices, materials	7.5					
	Silicon photonics	7.5					
	3D-integration and high-density interconnects	7.5					
	Keeping pace with, adapting and interfacing to COTS	7.5					

2035-

Important to meet several physics goals

Organization Desirable to enhance physics reach

R&D needs being met

ECFA DRD7: electronics and on-detector processing

- Programmable front-ends could trigger a paradigm change: process data at the front-end \rightarrow reduce amount of data to be moved, and optimise for read-out
- Adopt and adapt (existing and emerging) industry standards and techniques
- Study effective use of new technologies in back-ends (SoCs, silicon photonics, GPUs, FPGAs as accelerators) \rightarrow reduce amount of data to be moved
- <u>Maybe no longer need for a (custom) back-end at all?</u> Connect front-ends directly to COTS hardware, using standard protocols
 - The next logical step after the PCIe40 and the FELIX?
 - May require separating slow control from trigger-DAQ again
 - DUNE are going in this direction, important proving ground

		DF
Data	High data rate ASICs and systems	7
Dala density	New link technologies (fibre, wireless, wireline)	7
uchisity	Power and readout efficiency	7
Intelligence	Front-end programmability, modularity and configurability	7
on the	Intelligent power management	7
detector	Advanced data reduction techniques (ML/AI)	7
	High-performance sampling (TDCs, ADCs)	7
4D-	High precision timing distribution	7
tecnniques	Novel on-chip architectures	7
Evtrama	Radiation hardness	7
environments	Cryogenic temperatures	7
and longevity	Reliability, fault tolerance, detector control	7
	Cooling	7
	Novel microelectronic technologies, devices, materials	7
Emerging	Silicon photonics	7
technologies	3D-integration and high-density interconnects	7
-	Keeping pace with, adapting and interfacing to COTS	7

Recent architecture example that optimise COTS hardware use

HEP data in the DAQ network — there and back again?

- Functionally, data move from front-end, to backend, to read-out, to event building, to event filtering
- If read-out, protocol translation, etc. is heavy, the presence of the readout-only node leads to unidirectional network use
- If this load can be lightened (or if the processors improve faster than the network bandwidth) a folded approach uses the NICs more efficiently \rightarrow `half the network ports'
- Note that in both approaches the network settings can be fine-tuned, probably with varying results

Recent architecture example that optimise COTS hardware use

HEP data in the DAQ network — there and back again?

- Functionally, data move from front-end, to backend, to read-out, to event building, to event filtering
- If read-out, protocol translation, etc. is heavy, the presence of the readout-only node leads to unidirectional network use
- If this load can be lightened (or if the processors improve faster than the network bandwidth) a folded approach uses the NICs more efficiently
 → `half the network ports'
- Note that in both approaches the network settings can be fine-tuned, probably with varying results

Recent example that maximises the use of COTS equipment ALICE O² turns the (annual) LHC duty-cycle into an advantage

- The upgraded ALICE read-out uses only a single custom processing and read-out board: the Common Readout Unit (CRU/ PCIe40)
- PCIe board, housed in COTS host, equipped with versatile firmware
- COTS equipment handles all further stages of data acquisition
- Finely-tuned, custom software orchestrates data-taking workflow

- LHCb uses a similar approach, on an LHC fill-by-fill basis
 - \rightarrow Use the inter-fills as asynchronous processing time
 - → May require redefining the meaning of 'raw data'

Food for thought

• No read-out revolution is necessary. Evolution is doing just fine.

- Decreasing need for custom hardware
- Increasing need for <u>smart software and system design to optimise the use of COTS solutions</u>

• Some of the ECFA DRD7 projects have the potential to more radically change future detector read-out, as well as trigger-DAQ architectures

- No more back-end? Configurable front-ends? Intelligent front-ends?
- Or, can we make the smart NIC the next GPU?

• Continued evolution of our trigger-DAQ systems for the benefit of physics would really profit from a more `holistic' approach to detector design

(e.g., ensure that increasing granularity 'maps well' to trigger requirements and read-out aggregation) This could be a great by-product of the recent ECFA DRD efforts

• COTS components are moving closer to on-detector (e.g., some muon systems already use FPGAs and SFPs)

Thank you for your interest

Questions and comments are welcome Now, or over coffee later

Detector read-out has changed subtly

- Front-ends remain built around custom ASICs and links
 - <u>Common component development</u> optimises design and testing efforts, and maximises chances of success
 - Custom-to-COTS interoperability is a new challenge for every new technology generation
- Back-ends remain custom hardware, based on COTS components
 - Recent development very closely integrates the custom hardware with COTS hosts
- Event building is (and has been for a while) based on:
 - custom software, running on on COTS hardware, using standard interconnect technologies
 - Main challenge: keeping up with COTS developments, and effectively adopting/adapting those

