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The 1% challenge

Huge HL-LHC dataset: precision measurements at the % or sub-% level

G. Salam, 2016
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https://indico.cern.ch/event/442390/contributions/1095992/attachments/1290565/1921904/LHCP-QCD-43.pdf
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2022-018/

Real-time luminosity information

Real-time monitoring of per-bunch luminosity for fast feedback to the accelerator:
o luminosity delivered at each interaction point (and how they compare)
e evolution within a fill for luminosity-leveling (max pile-up)
e profile within a train of bunches

HL-LHC Luminosity leveling, CMS-NOTE-2019-008
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This information is continuously needed, also outside stable beams, with an
accuracy better than ~5% and a granularity of a few seconds.
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https://cds.cern.ch/record/2706512
https://op-webtools.web.cern.ch/vistar/

Luminosity measurements

L _ R _ M n, = number of bunches
B 2 I 2 ) nb T f = revolution frequency
inel inel
Relate the rate of a given process with its cross-section
e e.g. inelastic p-p collisions

e 0On a per-bunch basis can be written as a function of number of interactions
per bunch-crossing (M)
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Luminosity measurements: visible count

[ — R _ M "nbfr:@°nbf’r

Oinel O inel €0 inel

Each luminosity detector/algorithm (luminometer) has a specific efficiency to
detect each inelastic pp collision ().
M. = €M is the visible counting rate

Three classes of algorithms:
o Object Counting: count of “hits” in each event, sum over events
o number of cells/pixels/fibers, tracks, number of Z bosons, ...
o strongly relies on well-verified Poisson-statistics assumption

o Particle Flux: “continuous” observable proportional to p
o current in PMTs of calorimeters, ...

o [Event Counting]: infer from 0-count rate (R0O) & Poisson statistics
o low pile-up datasets, won’t scale well for HL-LHC
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Luminosity measurements: absolute calibration

R B €l
L — Oinel — Oinel nbf’l" - . nbfT

. =¢&0 is called visible cross-section

e ldeally constant in time and conditions

Measured in dedicated fills (van-der-Meer scans) where luminosity can be

computed independently. Eur. Phys. J.C 63 (2023) 982
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https://link.springer.com/article/10.1140/epjc/s10052-023-11747-w

Luminosity measurements: extrapolation

Calibration Transfer
From vdM scan conditions to physics
e pile-up, bunch trains, ...

Eur. Phys. J. C 83 (2023) 982
A1.06I_I|II\I|\II\|I\II‘\I\Il\ll[‘l\lllll_\
2 - ATLAS

v YT {s=13 TeV
A 1.02F LHC fill 6024, July 29, 2017 -

understood
to <1% level

0.92- e LUCID BiHitOR -
O_QiAEMEC
" ¥ Tile D6 + .
088 oo
15 20 25 30 35 40 45
<H, >

Much larger extrapolation needed for
HL-LHC, p ~ 1 — ~ 140.
o high dynamic range, insensitive to

pile-up effects, bunch structure, ...
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Long-term stability
Throughout data-taking periods.
o varying fill-by-fill conditions
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Sensitive to detectors’ aging, operational
conditions, beam conditions, ...


https://link.springer.com/article/10.1140/epjc/s10052-023-11747-w
http://dx.doi.org/10.1140/epjc/s10052-021-09538-2

Run 2 Luminosity and HL-LHC expectations

Run-2 uncertainty already < 1%
o after lots of experience and refinements, here as example using ATLAS

Absolute calibration (vdM) ~ 0.65%
e expected to be very similar to nowadays
o Xx/y correlations effects play a key role
o e.g. for Run-3 much larger, dominant

Calibration transfer ~ 0.50%
e much larger extrapolation needed for HL-LHC
e expected to be the dominant contribution to the total uncertainty at HL-LHC

Long-term stability ~0.14%
e only possible via multiple methods that can be compared and investigated
e Need to design robust, redundant and complementary luminometers and
methods (person-power!)

Eur. Phys. J. C 83 (2023) 982
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https://link.springer.com/article/10.1140/epjc/s10052-023-11747-w
https://link.springer.com/article/10.1140/epjc/s10052-023-11747-w

HL-LHC Requirements

Need a redundant set of luminometers with complementary strengths
o atleast three independent that should have critical requirements satisfied
e many others that are instrumental in cross-calibrating and track stability

Some of the key requirements:
/( bunch-by-bunch measurement \

e < 1% statistical uncertainty in ~30s

e |ow or accurately subtractable (beam-induced) backgrounds
e large dynamic range: y~107 to 200

e available outside stable beams

& dedicated/independent DAQ /

e < 1% non-linearity with in-time and out-of-time pile-up

e Excellent long-term (months/years) stability

Experiments have planned various upgrades to satisfy these requirements with
multiple detectors. | will show a sample of them next.
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Cherenkov-based luminometers: PMT and Fibers

Cherenkov radiation from Quartz (SiO,)
e Photomultiplier tubes (PMT) with quartz window
e Quartz fibers

Positioned far-forward (nx4) in the detectors
on both sides.

LUCID-3 ATLAS

EXPERIMENT

LUCID-3
8 PMTs

Technology already well tested in previous runs,
but major changes to adapt acceptance to
expected HL-LHC particle multiplicity.

e ATLAS has installed a prototype already

in Run 3 data-taking e

o FACEW\TE\;\_[ :)_MIN.
Some key common characteristics: woro. A0
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good statistical uncertainty, quickly;

large dynamic range (multiple sizes). PLUME

some non-linear pile-up response,
o improvements mitigate effects; 73 PIN BaSE

e some long-term stability effects,

o mitigated with continuous active monitoring.

c = TR

B

13 MAX.
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Solid-state detectors as luminometers

Two main technologies:
e diamond sensors (multiple-sized sensors)
e silicon sensor pads on dedicated forward rings
o LGAD fast timing detector
Some also used as beam protection systems.
Fast-timing: in-situ background subtraction in timing.

BCM’

ATLAS

EXPERIMENT

Some key common characteristics:
e independent readout, always available;
e good statistical uncertainty, quickly;
e large dynamic range (multiple sizes).
e some non-linear in/fout of time pile-up response;

e some long-term stability effects. Timing scan (RC=3)
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https://iopscience.iop.org/article/10.1088/1748-0221/19/03/C03048
https://arxiv.org/abs/2312.02834

Pixel detector as luminometer

Luminosity Back End

Pixel detectors offer a great linearity and stability,  w mger rates @pu 200 o
. . . . . CMS Level-1 Accept: 750 kHz Histogramming »
with multiple algorithms possible, from counting — uminosiy: -7 e g
cluster of hits (PCC) to short tracks. E e —
o CMS foresees dedicated readout for X
forward pixel endcaps (TEPX, 2 m? of Si) N I L
e ATLAS proposed dedicated ring (PLR), RDS3 et |°T°
but not yet approved EELD{H——1 -&, mertcter |y ope
I ) P A S i
PCC / Track-based measurements are workhorse of e ey

current luminosity strategy.

dedicated readout, if foreseen per-bunch readout (sampling)
excellent background rejection
large dynamic range

excellent pile-up

independence ‘ 2-fold

TEPX

|Ong_term coincidence
stability (redundancy)

% 3-fold

coincidence
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Calorimeter-based luminometers

Hadronic (forward) calorimeters (some with dedicated readout) have been proven
to be excellent in dynamic range, critical to vdM to physics extrapolation.
e dedicated readout for CMS forward hadronic calorimeter
o Zero-degree calorimeter (ZDC, ALICE)

proton ZDC

Demonstrated
Focus on having them as fully-calibrated Iumlnometers

Detector aging needs proper corrections.

CMS Prel/mlnary 2012, 2016, 2017 and 2018
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https://cds.cern.ch/record/2706512

Higher-level objects as luminometers

A large spectrum of offline algorithms are crucial in the calibration transfer and
long-term stability studies, for the ultimate 1% accuracy on integrated luminosity.

Two great examples that use higher-level objects from multiple detectors
e robustness due to redundancy in object reconstruction

Track Counting
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e dedicated stream and reconstruction for
fast processing and large statistics

LHCP 2024 — Simone Pagan Griso

Z luminosity / Ref. luminosity

Z-boson Counting

CMS 13TeV (2017)
e Measurement — Average Ref. luminosity uncertainty '
1.05
1.00 [
0.95F  Eur. Phys. J. C 84 (2024) 26
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e larger luminosity ensures large statistics

even for “rare” processes (e.g. Z)
o also proposed for calibration transfer

e /—uyu offers in-situ calibration of

efficiency and detector response 14


http://dx.doi.org/10.1140/epjc/s10052-023-12268-2
https://arxiv.org/abs/2309.01008
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/LUMI-2022-01/

Redundancy and Complementarity

Each experiment will have at least three or more independent luminometers
e each capable of working from vdM to nominal conditions
Several methods will be used to cross-calibrate their response. &
\
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https://cds.cern.ch/record/2706512

Conclusions

The HL-LHC demands and accurate luminosity measurement

Multiple factors need to be controlled exquisitely well to achieve those targets
o the transfer of calibration from dedicated to physics fills will play a key role

The LHC experiments have designed a set of upgrades to meet these challenges,
including increasing the redundancy of independent luminometers available.

Only a sustained effort and an ambitious upgrade program can achieve the
equally ambitious physics goals we have set for HL-LHC!
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Luminosity measurements: absolute calibration

L:R—'u  Eu

Oinel o Oinel . nbfT - . nbf’l"

o . = g0 is called visible cross-section

vis

e ldeally constant in time and conditions

Key hypothesis: uncorrelated luminous region distribution in transverse directions
e direct 2D scans (time consuming) JINST 9 P12005 (2014)
e beam imaging (dedicated detectors) e s
e indirect effects on luminous region shape

Sub-dominant for full Run 2 calibration,
dominant for preliminary Run 3 results.

While expected to be similar for HL-LHC,
it's hard to predict a-priori, a key possible
challenge in the HL-LHC era!
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https://arxiv.org/abs/1410.0149

