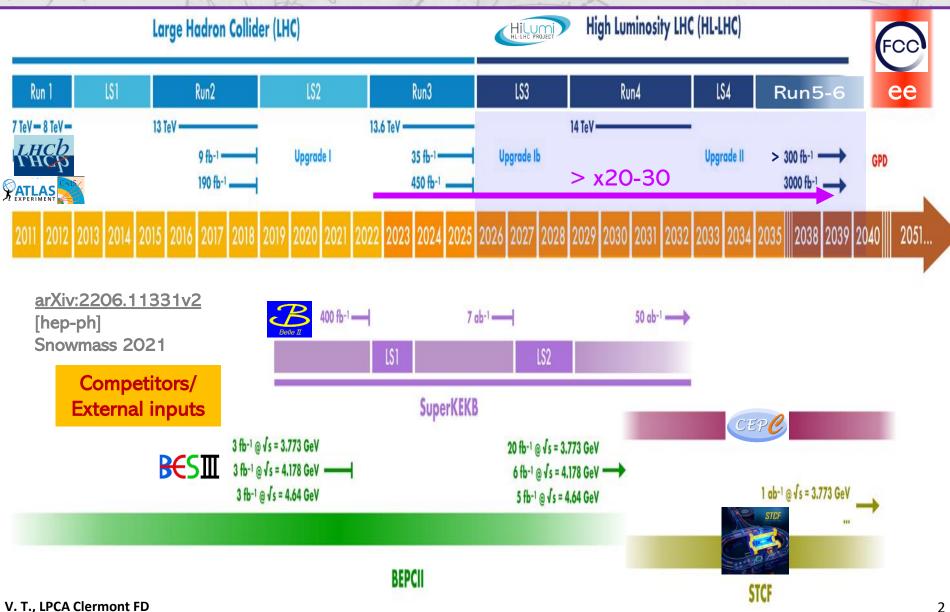

LHC

portunities in Heavy Flavour **Physics at HL-LHC experime** V. Tisserand*, LPCA-Clermont Ferrand, France

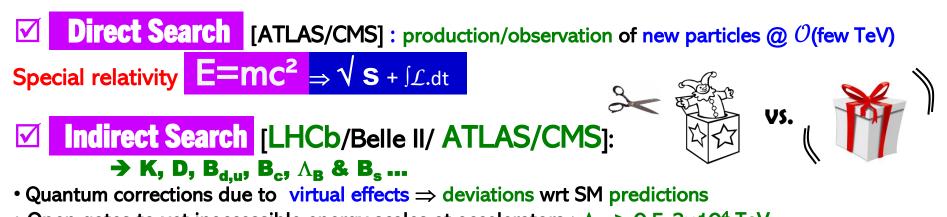
*On behalf of the 4 LHC collaboration thanks for discussions while preparing:

- B. Hippolyte (ALICE)
- S. Turchikhin (ATLAS)
- C. Rovelli (CMS)
- Y. Amhis & T. Gershon (LHCb)

BSM may be reached at Heavy Flavour INTENSITY



GDR-InF

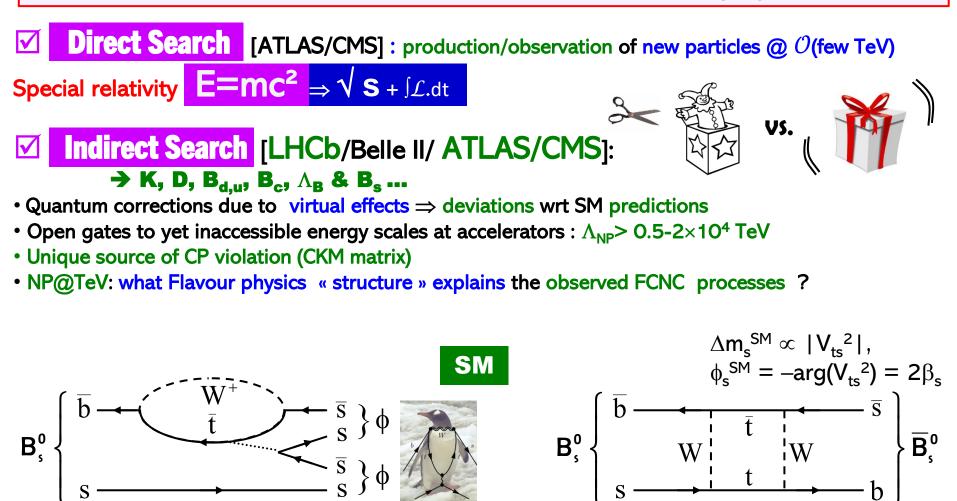


Opportunities in Heavy Flavour Physics at (HL-)LHC experiments over more than 30 years!

Flavour Physics: an open gate to Beyond the Standard Model?

New Physics (NP) BSM can be discovered in complementary approaches "bottom-up" : from data how to unfold the NP Lagragian

- Open gates to yet inaccessible energy scales at accelerators : $\Lambda_{\rm NP}{>}$ 0.5-2×10⁴ TeV
- Unique source of CP violation (CKM matrix)
- NP@TeV: what Flavour physics « structure » explains the observed FCNC processes ?


Flavour Physics and 60 years of SM foundation :

- • $\mathcal{B}(K_L \rightarrow \mu \mu) / \mathcal{B}(K^+ \rightarrow \mu \nu)$: prediction of 4th quark (GIM)
- • $\Delta m_{\rm K}$: prediction of charm quark mass (m_c ~ 1.5 GeV/c²)
- • Δm_d : prediction of top quark mass (m_t > 50 GeV/c²)
- + Kaon CPV ('64) + KM ('73) \Rightarrow '74 (c), & 3rd family observed in '77 (b), '95 (t)
- + neutral currents Gargamelle ('73) & UA1 au SppS ('83) ...

Far before direct observations!

Flavour Physics: an open gate to Beyond the Standard Model?

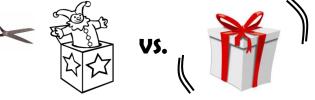
New Physics (NP) BSM can be discovered in complementary approaches "bottom-up" : from data how to unfold the NP Lagragian

 $B_s \rightarrow \phi \phi$ rare decay: "Penguin"

 $B_{s} - \overline{B_{s}}$ oscillation: "Box"

Flavour Physics: an open gate to Beyond the Standard Model?

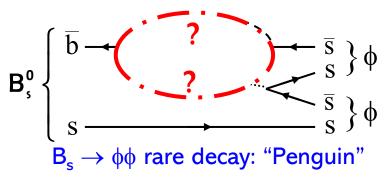
New Physics (NP) BSM can be discovered in complementary approaches "bottom-up" : from data how to unfold the NP Lagragian


Direct Search [ATLAS/CMS] : production/observation of new particles @ O(few TeV)

NP

Special relativity $E = mc^2 \Rightarrow \sqrt{S + \int \mathcal{L} dt}$

✓ Indirect Search [LHCb/Belle II/ ATLAS/CMS]: ^C


 \rightarrow K, D, B_{d,u}, B_c, Λ_{B} & B_s...

- Quantum corrections due to virtual effects \Rightarrow deviations wrt SM predictions
- Open gates to yet inaccessible energy scales at accelerators : $\Lambda_{\rm NP}{>}$ 0.5-2×10⁴ TeV
- Unique source of CP violation (CKM matrix)
- NP@TeV: what Flavour physics « structure » explains the observed FCNC processes ?

→ Quantum mechanics $\Delta E.\Delta t \sim \hbar \Rightarrow \int \mathcal{L}.dt$

loops/boxes : CPV &/or rare decays

 $\Delta m_{s} \neq \Delta m_{s}^{SM} \propto |V_{ts}^{2}|,$ $\phi_{s} \neq \phi_{s}^{SM} = -\arg(V_{ts}^{2}) = 2\beta_{s}$ $B_{s}^{0} \left\{ \begin{array}{c} \overline{b} & & \\ \hline & & \\ \hline & & \\ S & & \\ S & & \\ \hline & & \\ B_{s}^{-} & \overline{B}_{s}^{-} & oscillation: "Box" \\ \end{array} \right\} \overline{B}_{s}^{0}$

→ accessing new couplings/phases in

V. T., LPCA Clermont FD

LHC(b/c) Physics Programme: Precision / Intensity Frontiers

Dedicated experiment for precision measurements for NP quest in CPV/rare decays with all the b(c) hadrons produced: B_d(40%), B_u(40%), B_s (10%), B_c (0.1%), b-baryons (10%) (matter/anti-matter)

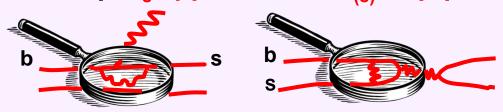
- 1) Precision CKM deviations/SM:
- UT coherence tests : angle γ many methods/modes+ trees/penguins
- Redundancy measurement of same parameters : NP sensitive or not [e.g.: sin(2 β) tree/penguins $B_d \rightarrow (J/\Psi K_s \Leftrightarrow \phi K_s)$].
- 2) NP through new CP phases:

• B_s mixing phase ($|\Delta F|=2$) $\phi=-2\beta_s \ B_s \rightarrow J/\Psi\phi$, $J/\Psi\pi\pi$, $J/\Psi KK + (J/\Psi\eta^{(\prime)}, \eta_c\phi, D_sD_s...)$

• penguin with small CPV: $B_s \rightarrow \phi \phi$

3) NP in rares decays ($|\Delta F|=1$ FCNC): asymmetries (A_{FB} , direct, time dep: C, S, ...), angular/ampli. analysis transversity/helicity structure of currents (V-A), polarization (RH γ ?), differential BFs, BFs >SM pred ? $B_{\rightarrow}K^*\gamma$, $B_{s}\rightarrow\phi\gamma$, $B_{\rightarrow}K^*I^+I^-$, $B_{(s)}/D_{\rightarrow}\mu^+\mu^-$...

4) LFU tests + $R_{D(*)}$ = $\mathcal{B}[B \rightarrow D(*)\tau\nu]/\mathcal{B}[B \rightarrow D(*)\mu\nu]$ + R_x = $\mathcal{B}[H_{b,c} \rightarrow X\mu\mu]/\mathcal{B}[H_{b,c} \rightarrow Xee]$


See also Physics case for an LHCb Upgrade II and references therein for ATLAS/CMS

Ingredients for High Precision with Heavy Flavour

"The full physics potential of the LHC and the HL-LHC, including the study of flavour physics, ... should be exploited" Deliberation of the European Strategy 2020*

High production rate

Enormous beauty & charm production cross-sections at LHC energies [Approx 3×10^{11} b hadrons & 5×10^{12} c hadrons per fb⁻¹]**

Largest possible dataset

Detector upgrade needed to collect maximum possible (>300 fb⁻¹ (CC)) by end of High Lumi-LHC operation

Matched by $\operatorname{ATLAS}_{\text{EXPERIMENT}} \& : \int \mathcal{L} dt > 3000 \text{ fb}^{-1} (\operatorname{KKC}_{\text{KC}} exceeded)$

- * Update in 2 years
- ** See for *e.g.*: Fabio Catalano @LHCP2023
- V.T., LPCA Clermont FD

Ingredients for High Precision with Heavy Flavour

Good selection efficiency

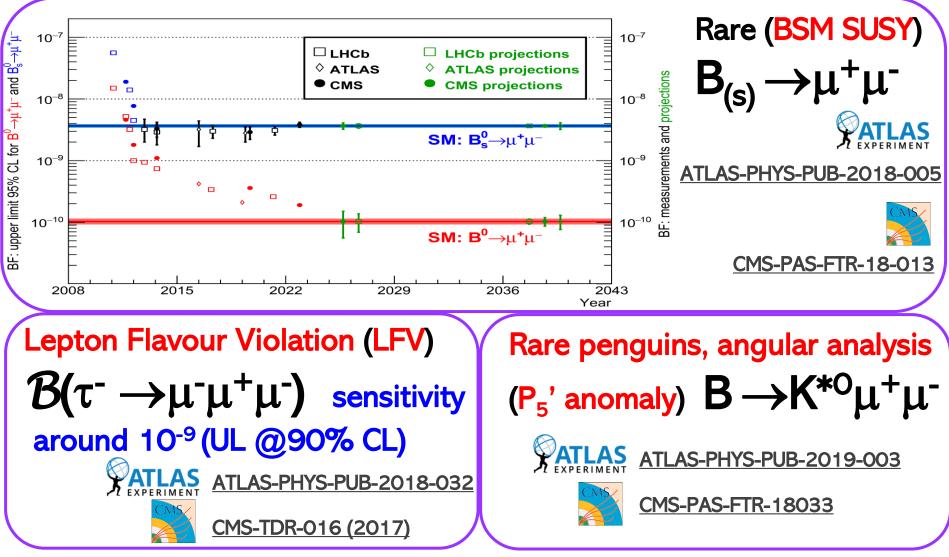
Go beyond 1/√N scaling with existing detector performances with improvements to acceptance and detection capability

Ability to resolve signal

Requirements for flavour physics at high occupancy (momentum, vertexing, timing, and PID $\pi/K/p$ separation, including γ/π^{0}) distinct to those for high p_{T} physics

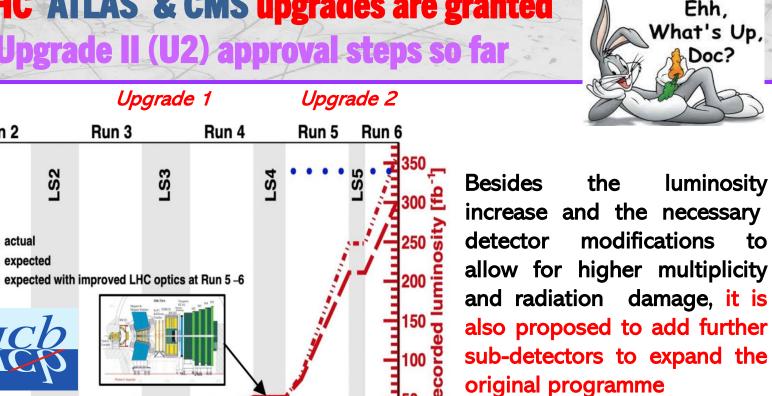
Channel dependent- All charged tracks: \square is superior to any other experiment (*far* superior except for a few final states including muons, where \square ATLAS & \square are competitive) One (or more) neutral particles: Belle II is competitive (or better)

→ Heavy Flavour physics triggers at LHC are based on secondary vertices, it's crucial to trigger efficiently at high-pileup environment !


→ Here we only have 15 minutes, and the HF at HL-LHC ATLAS/CMS/LHCb physics case was already presented back in <u>March 2019 by P. Owen at the HL/HE-LHC Physics Workshop: final jamboree</u>

ATLAS-PHYS-PUB-2018-005

The power of muons/new tracking at ATLAS/CMS (& LHCb)



- Those studies are quite known now (~5 years old)
- will discuss the $B_s \rightarrow J/\psi[\mu^+\mu^-]\phi(1020)[K^+K^-] CKM \phi_s$ case again later,

V.T., LPCA Clermont FD

HL-LHC refs are CMS-PAS-FTR-18-041 and ATL-PHYS-PUB-2018-041

The HL-LHC ATLAS & CMS upgrades are granted LHCb Upgrade II (U2) approval steps so far

2040

LHCb-Pub-2018-009 (physics case) & LHCb-TDR-023 ('22 detector design) LHCb-TDR -24 ('23 FTDR enhancements PID at LS3), documents being updated (scoping document required by LHCC underway, due after this '24 summer)

2035

→ LHCb to operate at HL-LHC : accumulate maximum unprecedented samples and a compelling bright physics programme to search for BSM (not only Heavy Flavour !) → LHC optics may be improved at LHCb & allow for 370/300 fb⁻¹@1.5x10³⁴cm⁻².s⁻¹

2010

Run 1

5

²eak luminosity [10³³ cm⁻²s⁻

Run 2

LHC

2015

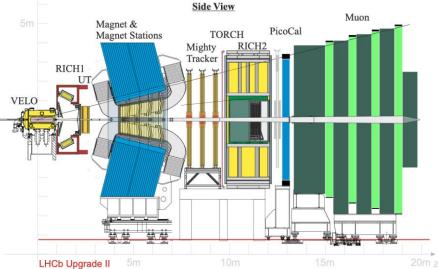
actual

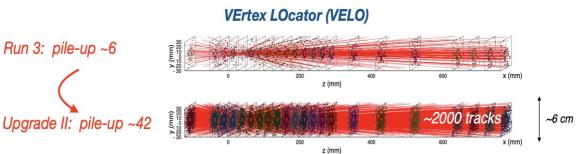
2020

2025

Year

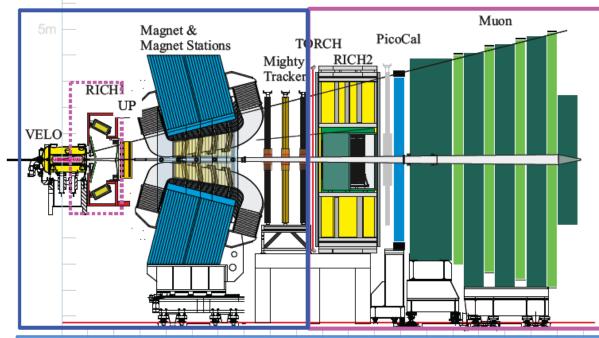
2030


to


The features of the new LHCb (U2) detector LHCb

- Targeting the same performance, or even better in certain areas, as in Run 3, but with an increased pile-up of a factor 7
- Same footprint of the LHCb(U1) spectrometer, but with innovative technology for sub-detectors/data processing ("technology frontier")

- High(er) granularity


- Fast timing: few tens of pico-seconds

- New components radiation hard: up to few 10¹⁶ neq/cm²

V.T., LPCA Clermont FD

The features of the new LHCb (U2) detector LHCb

Baseline design: targeting same (or better in certain domains) performance as in Run 3, but running at 1.5x10³⁴cm⁻²s⁻¹ with pile-up ×7 wrt Run 3!

PID system

RICH: reduced pixel with SiPM/MCP, timing info added

TORCH: new time-of-flight forlow momentum, quartz andSiPM/MCPSYSTEM

PicoCal: timing and longitudinal segmentation, SPACAL with radiation hard crystals inner region, old Shashlik outer region +time fit ~20ps

Muon: muRWELL technology inner region, keep old MWPCs outer region

Tracking system

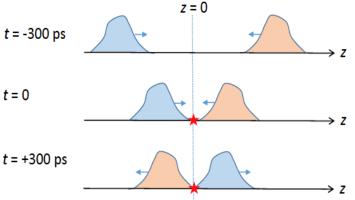
VELO: pixel 3D silicon, hit time resolution 50ps, ASIC 28nm

UP (upstream tracker) and Mighty Tracker (downstream): MAPS pixel for UP and inner region of Mighty Tracker, scintillating fibres for outer region of Mighty Tracker

Magnet Stations: scintillating slabs covering side walls of magnet, for low momentum NEW SYSTEM

Exciting technology roadmap: the developments needed to face the harsh experimental conditions of HL-LHC in the forward direction will represent a bridge towards projects based at future accelerators

V.T., LPCA Clermont FD


More details by E. Niel on LHCb upgrades plenary yesterday

The importance of precision timing

→ Timing capability with a resolution of a few tens of picoseconds is a key to reduce background and associate signal decays to correct p-p primary vertices (LHC beam vertex diamond with \sim 6 cm [200 ps])

<u>Example:</u> interactions happening are at same z but separated by 300 ps in time

The programme requires strong R&D on sensors, already ongoing, and dedicated efforts for the design of new FEE (Tracking and PID (TORCH RICH and PicoCal))

The key observables of LHCb U2 HF physics programme relies on sub-detectors performance

LHCb-Pub-2018-009	Observable	Current LHCb	Upgr	ade I	Upgrade II	
LHCb-TDR-023		$(up to 9 fb^{-1})$	$(23{ m fb}^{-1})$	$(50{ m fb}^{-1})$	$(300{ m fb}^{-1})$	
need efficient tracking (especially multi-body decays), and robust	$ \begin{array}{l} \underline{\mathbf{CKM \ tests}} \\ \gamma \ (B \to DK, \ etc.) \\ \phi_s \ (B_s^0 \to J/\psi\phi) \\ V_{ub} / V_{cb} \ (\Lambda_b^0 \to p\mu^-\overline{\nu}_\mu, \ etc.) \\ a^d_{\mathrm{sl}} \ (B^0 \to D^-\mu^+\nu_\mu) \\ a^s_{\mathrm{sl}} \ (B_s^0 \to D_s^-\mu^+\nu_\mu) \\ \underline{\mathbf{Charm}} \end{array} $	$\begin{array}{cccc} 4^{\circ} & [9,10] \\ 32 \mathrm{mrad} & [8] \\ 6\% & [29,30] \\ 36 \times 10^{-4} & [34] \\ 33 \times 10^{-4} & [35] \end{array}$	1.5° 14 mrad 3% 8×10^{-4} 10×10^{-4}	1° $10 \mathrm{mrad}$ 2% 5×10^{-4} 7×10^{-4}	0.35° $4 \operatorname{mrad}$ 1% 2×10^{-4} 3×10^{-4}	<pre> need best charged hadron PID need light detector </pre>
	$egin{aligned} \Delta A_{C\!P} & (D^0 o K^+ K^-, \pi^+ \pi^-) \ A_\Gamma & (D^0 o K^+ K^-, \pi^+ \pi^-) \ \Delta x & (D^0 o K^0_{ m s} \pi^+ \pi^-) \end{aligned}$		$5 imes 10^{-5}$	$8 imes 10^{-5}$ $3.2 imes 10^{-5}$ $4.1 imes 10^{-5}$		need increased } acceptance for low p⊤ tracks
reconstruction of decay	$\frac{\text{Rare Decays}}{\mathcal{B}(B^0 \to \mu^+ \mu^-)/\mathcal{B}(B^0_s \to \mu^+ \mu^-)} \\ S_{\mu\mu} (B^0_s \to \mu^+ \mu^-)$		41%	27%	$11\% \\ 0.2$	} need best muon ID and mass resolution
vertices	$\begin{array}{l} A_{\mathrm{T}}^{(2)} & (B^{0} \to K^{*0}e^{+}e^{-}) \\ A_{\mathrm{T}}^{\mathrm{Im}} & (B^{0} \to K^{*0}e^{+}e^{-}) \\ \mathcal{A}_{\phi\gamma}^{\Delta\Gamma}(B_{s}^{0} \to \phi\gamma) \\ C_{s} & (B^{0} \to \phi\gamma) \end{array}$	$\begin{array}{ccc} 0.10 & [52] \\ 0.10 & [52] \\ ^{+0.41} & [51] \\ 0.32 & [51] \end{array}$	0.060 0.060 0.124 0.002	0.043 0.043 0.083 0.062	0.016 0.016 0.033 0.025	need best calorimetry
	$S_{\phi\gamma}(B^0_s \to \phi\gamma)$ $\alpha_{\gamma}(\Lambda^0_b \to \Lambda\gamma)$ Lepton Universality Tests	$\begin{array}{ccc} 0.32 & [51] \\ ^{+0.17} \\ ^{-0.29} & [53] \end{array}$	$\begin{array}{c} 0.093 \\ 0.148 \end{array}$	$0.062 \\ 0.097$	$\begin{array}{c} 0.025\\ 0.038\end{array}$	and charged hadron PID
	$ \begin{array}{c} R_{K} \ (B^{+} \to K^{+} \ell^{+} \ell^{-}) \\ R_{K^{*}} \ (B^{0} \to K^{*0} \ell^{+} \ell^{-}) \\ R(D^{*}) \ (B^{0} \to D^{*-} \ell^{+} \nu_{\ell}) \end{array} $	$\begin{array}{c ccc} 0.044 & [12] \\ 0.12 & [61] \\ 0.026 & [62, 64] \end{array}$	$0.025 \\ 0.034 \\ 0.007$	0.017 0.022 0.005	$0.007 \\ 0.009 \\ 0.002$	J

More details in 7th LHCb upgrade II Workshop (March 2024 at CERN) [public material] LHCC for Sept '24: studies ongoing with full MC simul. on various benchmark complementary channels and various LHC machine and LHCb U2 detector scoping scenarios V.T., LPCA Clermont FD

LHCb Upgrade II Physics Case: CP violation LHCb

- **σ(γ): 0.35° Impressive precision**
- **σ(φ_s): 4 mrad**
- **σ(sin2**β): 0.003

0

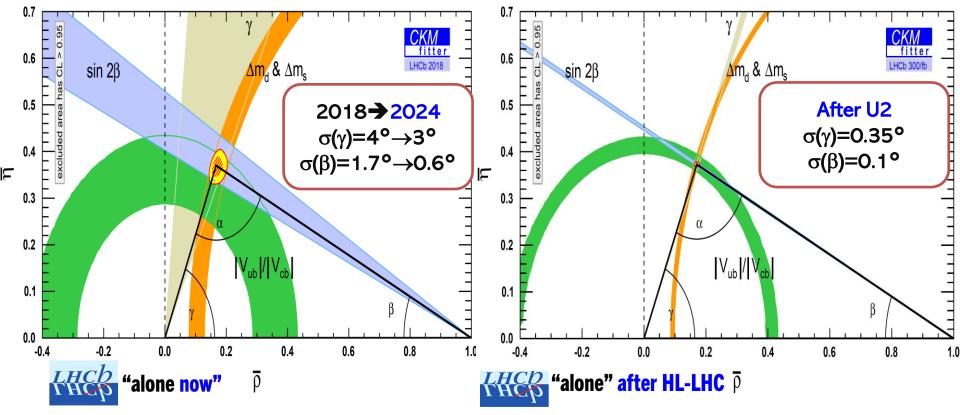
 $^{-1}$

-3

-4

-5

-6


 $\left[\circ\right] ^{O} Q \phi$

 σ (Charm CPV): $\mathcal{O}(10^{-5})$ •

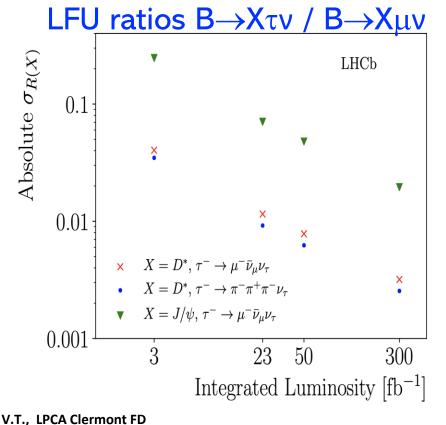
Unitarity Triangle expected improvements after Upgrade II

LHCb has outperformed expected 2018 sensitivities for both β and γ Many other BSM searches rely on these benchmarks (global CKM test)

THES Upgrade 2 will make the most precise measurements of all of the 5 key CP violation parameters (β , γ , φ_s , A_{sl}^{s} , A_{sl}^{d}) in the $B_{(s)}$ system

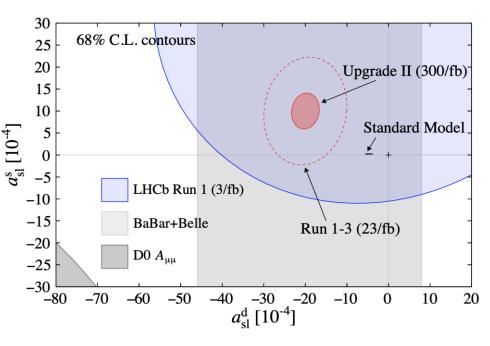
[But not without competition, both contemporary and further into the future V.T., LPCA Clermont FD ATLAS/CMS & Belle II]

HL-LHC synergy LHCb vs ATLAS/CMS (and Belle II)

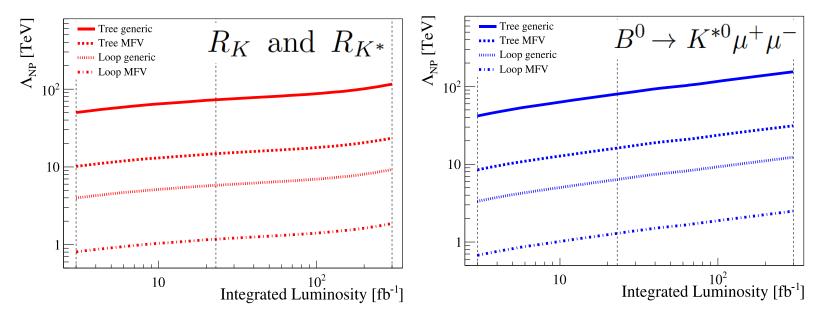

Observable	2018 Current LHCb	LHCb 2025	Belle II	Upgrade II	ATLAS & CMS
EW Penguins	інср	інср		інср	CMS/
$\overline{R_K \ (1 < q^2 < 6} \mathrm{GeV}^2 c^4)$	0.1 [274]	0.025	0.036	LHCP 0.007	
$R_{K^*} \ (1 < q^2 < 6 \mathrm{GeV}^2 c^4)$	0.1 [275]	0.031	0.032	0.008	_
R_{ϕ},R_{pK},R_{π}	-	0.08,0.06,0.18	_	0.02, 0.02, 0.05	First results from
CKM tests					CMS parked data do not appear
$\overline{\gamma, \text{ with } B^0_s} \to D^+_s K^-$	$(^{+17}_{-22})^{\circ}$ [136]	0.013 4°	_	1°	really competitive
γ , all modes	$\binom{-220}{-5.8}^{\circ}$ [167]	already 1.5°	1.5°	0.35°	-
$\sin 2\beta$, with $B^0 \to J/\psi K_{\rm S}^0$	0.04 [609]	achieved 0.011	0.005	0.003	
ϕ_s , with $B_s^0 \to J/\psi \phi$	$49 \mod [44]$	14 mrad	-	$4 \mathrm{mrad}$	22 mrad [610]
ϕ_s , with $B_s^0 \to D_s^+ D_s^-$	170 mrad [49]	$35 \mathrm{\ mrad}$	_	$9 \mathrm{\ mrad}$	
$\phi_s^{s\bar{s}s}$, with $B_s^0 \to \phi\phi$	154 mrad [94]	39 mrad	_	$11 \mathrm{\ mrad}$	Under study [611]
$a_{ m sl}^s$	$33 \times 10^{-4} \ [211]$	10×10^{-4}	_	$3 imes 10^{-4}$	-
$ert V_{ub} ert / ert V_{cb} ert$	6% [201]	3%	1%	1%	-
$B^0_s, B^0{ ightarrow}\mu^+\mu^-$					
$\overline{\mathcal{B}(B^0 \to \mu^+ \mu^-)}/\mathcal{B}(B^0_s \to \mu^+$	μ^{-}) 90% [264]	34%	_	10%	21% [612]
$\tau_{B^0_s \to \mu^+ \mu^-}$	22% [264]	8%	_	2%	
$S_{\mu\mu}^{-s}$	-	_	_	0.2	CMS showed
$b ightarrow c \ell^- ar{ u}_l ext{ LUV studies}$					23 mrad with Run2 at MEW24!
$\frac{1}{R(D^*)}$	0.026 [215, 217]	0.0072	0.005	0.002	
$R(J/\psi)$	0.24 [220]	0.071	_	0.02	_
Charm					
$\Delta A_{CP}(KK - \pi\pi)$	8.5×10^{-4} [613]	1.7×10^{-4}	$5.4 imes 10^{-4}$	$3.0 imes 10^{-5}$	_
$A_{\Gamma} (\approx x \sin \phi)$	2.8×10^{-4} [240]	4.3×10^{-5}	$3.5 imes10^{-4}$	1.0×10^{-5}	_
$x \sin \phi$ from $D^0 \to K^+ \pi^-$	13×10^{-4} [228]	3.2×10^{-4}	4.6×10^{-4}	8.0×10^{-5}	_
$x\sin\phi$ from multibody decay			$(K_{\rm S}^0\pi\pi) \ 1.2 \times 10^{-4}$	$(K3\pi) \ 8.0 \times 10^{-6}$	_
		. ,	LHCb Upgrade		
V. T., LPCA Clermont FD					17

V. T., LPCA Clermont FD

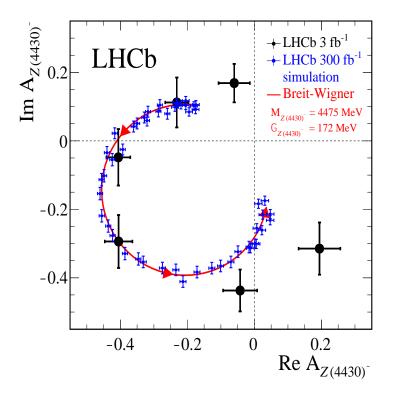
17


LHCb U2 Physics Case: semi-leptonics

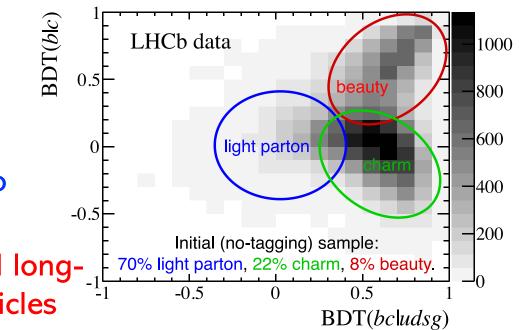
- Semileptonic sector is another key laboratory for new physics searches
- Very strong impact from **Upgrade II**


Semileptonic asymmetries $a_{\rm sl}^d$ and $a_{\rm sl}^s$

Sample (\mathcal{L})	$\delta a_{ m sl}^s [10^{-4}]$	$\delta a^d_{ m sl}[10^{-4}]$
Run 1 (3 fb ^{-1})	33	36
Run 1-3 (23 fb^{-1})	10	8
Run 1-3 (50 fb ⁻¹)	7	5
Run 1-5 (300 fb^{-1})	3	2
Current theory	0.03	0.6

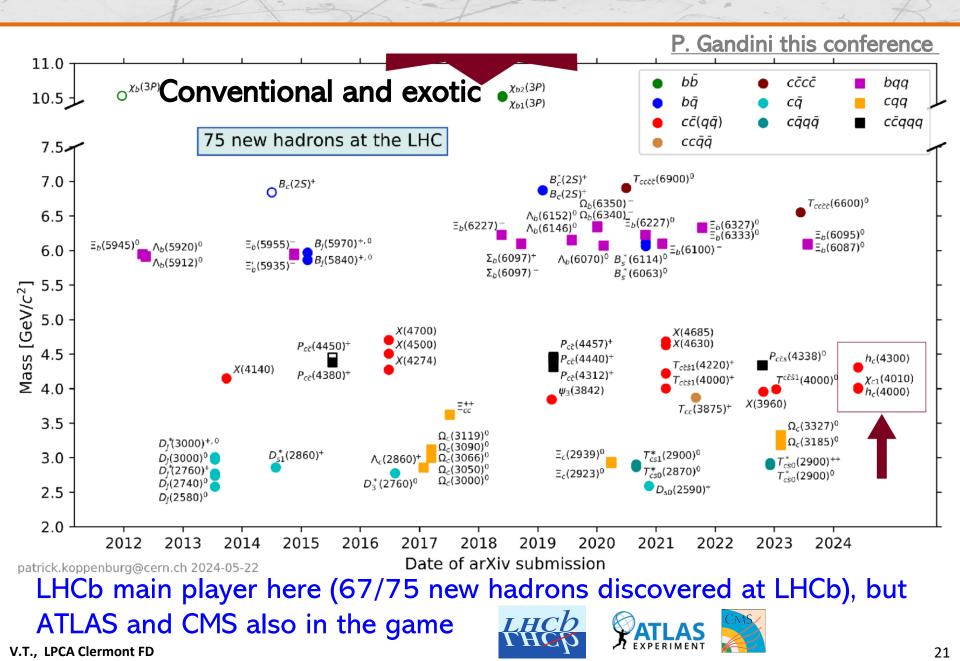

LHCb U2 Physics Case: rare penguin decays

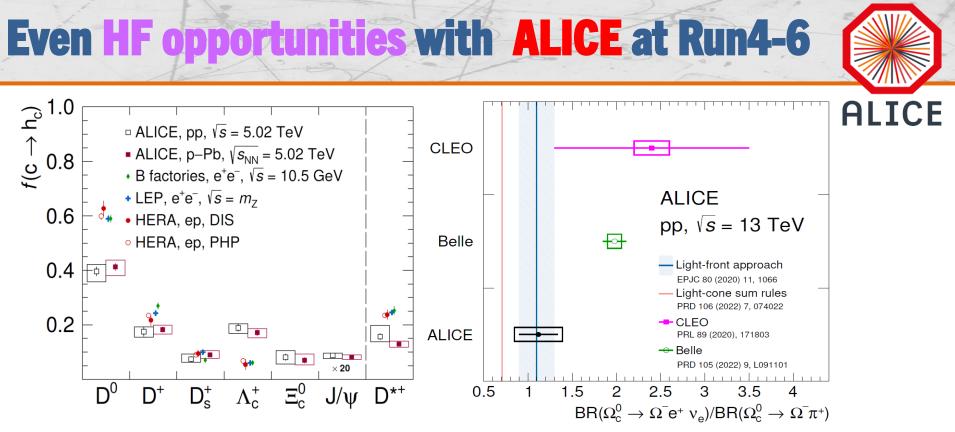
• Although hints for new physics in $b \rightarrow sl^+l^-$ transitions have been largely reabsorbed (*i.e.* "R_{K(*)} anomalies"), this is still interesting physics with strong discovery potential at Upgrade II statistics, also imposing relevant constraints on new physics models



- EFT approach -> generic new physics scale probed exceeds 100 TeV
- Concerning B→μμ → 11% precision on B⁰ / B_s ratio of branching fractions looks feasible
- Besides $b \rightarrow sl^+l^-$, LHCb U2 will have access also to rarer $b \rightarrow dl^+l^-$ transitions

LHCb U2 Physics Case: other flavour opportunities LHCb




- General purpose facility
 - Unique forward acceptance
- LHCb has had transformative effect on spectroscopy
 - Many more discovery opportunities

- Potential for best Higgs to charm limits at LHC
- Unique sensitivity for BSM longlived and dark sector particles

75 new hadrons already discovered at LHC and counting !

See ALSO, some references on the ALICE (3) heavy flavour physics programme:

- Charm fragmentation fractions and cc cross section in p-Pb collisions at $\sqrt{s_{NN}}=5.02$ TeV <u>arXiv:2405.14571v1 [hep-ex]</u>
- Measurement of Ω_c^0 baryon production and branching-fraction ratio BR($\Omega_c^0 \rightarrow \Omega^- e^+ v_e$) / BR($\Omega_c^0 \rightarrow \Omega^- \pi^+$) in pp collisions at $\sqrt{s} = 13$ TeV arXiv:2404.17272v1 [hep-ex]
- In <u>ALICE-TDR-021 2024</u> ALICE Inner Tracking System 3 ITS3, p9-10
- <u>ALICE 3 Lol (2022)</u>: see Physics Performances parts on Open Heavy Flavours, Quarkonia and Exotica

Uniqueness of LHCb Upgrade II Physics Case

- We have a once-in-a-lifetime opportunity to optimise
- the design of what will be a remarkable experiment, with unique capabilities to achieve the best possible heavy flavour-physics results (and more) from the HL-LHC
- LHCb Upgrade 2 will make by far the most precise measurements of a huge range of key flavour physics observables
- Unique tests of the SM predictions for CKM unitarity, CP violation, flavour changing neutral currents (FCNCs) in both mixing & decay, both beauty and charm
- Unrivalled discovery potential for understanding of exotic hadrons
- Completely unique access to fixed target hadron collisions (SMOG)
- □ Unique geometry, probing complementary regions of parameter space in heavy ion physics, long-lived particle searches, etc...

Most of this physics can only be done with LHCb U2 at the HL-LHC

We must not miss this opportunity

HL-LHC Heavy Flavour Physics Opportunities: key messages

- Host of theoretically clean (or clean-ish) observables that will not be limited by systematics (ϕ_s , γ , sin2 β , R_K(*), B $\rightarrow \mu\mu$, B $\rightarrow K^*II$, LFU tests ...)
- New physics scale probed will increase by a factor ~2/... compared with pre-HL-LHC
- Widen the set of observables under study to search and characterise new physics (b \rightarrow sll, b \rightarrow dll, b \rightarrow clv, ...)
- Strong program beyond flavour exploiting unique acceptance
 - Of course, known at the GPDs ATLAS and CMS, relying on great muons power and new tracking system, but not only ...
 - Even Higgs physics, spectroscopy, electroweak, dark sector, heavy ions, fixed target

→ Great opportunities and bright future ahead of us at HL-LHC to challenge (B)SM with Heavy Flavour Physics with Keep in complement to

