Precision electroweak measurements in LHCb

Miguel Ramos Pernas

on behalf of the LHCb collaboration

University of Warwick

miguel.ramos.pernas@cern.ch

LHCP 2024, Boston, 04/06/2024

European Research Council

Established by the European Commission

The LHCb detector

- Detector in the forward region with excellent momentum and vertex resolutions
- Coverage is complementary to ATLAS and CMS (with some overlapping at low pseudorapidity)

The unique scope of the LHCb detector

- The **enhanced coverage in the forward region** offers unique opportunities for studies at LHCb
 - Low and high Bjorken-x regions can be studied, hardly accessible for ATLAS and CMS
- The LHCb detector can provide valuable **measurements of cross-sections** and **fundamental quantities**
 - Competitive measurements with muonic modes
 - Possibility of studying associate production thanks to jet reconstruction
- The complementarity to ATLAS and CMS has **remarkable effects in LHC combinations**

The single-boson production cross-section

Cross-section studies

Z production cross-section at 5 and 13 TeV

- **Testing NNLO perturbative QCD** with similar precision experiment/theory O(1%)
- Using Run 2 data (2016-2018), normalized to the measured luminosity at LHCb
- LHCb has published Z cross-section measurements at 7, 8, 13 and lately 5.02 TeV

[JHEP 02 (2024) 070]

LHCb

10

MCFM + CT18, NNLO

cross-section [pb]

Theory

Data

√s [TeV]

Z + charm production

- Test for the presence of **charm quarks in the proton wave-function**
 - Having charm valence quarks opens new channels for W and Z production mechanisms
 - Strong implications in the definition of the PDFs and the understanding of the proton structure
- Several tests done in the past and recently, with **inconclusive results so far**
- The **LHCb analysis using full Run 2 data** shows some tension at high rapidity with non-IC models

[PRL 128 (2022) 082001]

Measuring the weak-mixing angle

The angular coefficients

- The angular cross-section of bosons (S=1) can be expressed as a function of 9 harmonic spherics, with their accompanying coefficients A_i
- All the A_i are highly sensitive to next-to-leading order corrections, in such a way that all of them are close to zero at LO except for A₄, **related to the weak mixing angle**
- LHCb measured these coefficients with full Run 2 data at 13 TeV
 - Especially valuable to validate predictions at low transverse momentum

$$\frac{d\sigma}{d\cos\theta d\phi} \propto (1 + \cos^2\theta) + \frac{1}{2}A_0(1 - 3\cos^2\theta) + A_1\sin 2\theta\cos\phi + \frac{1}{2}A_2\sin^2\theta\cos 2\phi + A_3\sin\theta\cos\phi + A_4\cos\theta + A_5\sin^2\theta\sin 2\phi + A_6\sin 2\theta\sin\phi + A_7\sin\theta\sin\phi$$

$$A_0 = A_2 \text{ at LO for quark-antiquark and gluon-quark processes (Lam-Tung relation)}$$

The weak mixing angle

- It is an useful quantity to **test the custodial symmetry** of the Standard Model
 - Measuring the weak-mixing angle can also be seen as an indirect measurement of the W boson mass:

$$\sin^2 heta_W = 1 \, - \, rac{m_W^2}{m_Z^2}$$

- The treatment of A₄ deserves a special attention, since **condenses information** about the **vector** and **axial-vector couplings** of the Z boson, and is related to the weak-mixing angle
- It becomes interesting to perform singular measurements that **maximize** the **sensitivity to the weak mixing angle** (e.g. dilepton mass)
- The measurement is **more challenging at** the **LHC compared to LEP**, since it condenses information on the proton polarization

The definition of **"forward"** and **"backward"** is more ambiguous due to the **difference between quark** and **hadron level** information

$$\bullet A_{\rm fb} = \frac{\sigma_f - \sigma_b}{\sigma_f + \sigma_b} = \frac{\sigma(\cos\theta^* > 0) - \sigma(\cos\theta^* < 0)}{\sigma(\cos\theta^* > 0) + \sigma(\cos\theta^* < 0)}$$

$$\frac{d\sigma}{d\cos\theta^*} \propto 1 + \cos^2\theta^* + \frac{8}{3}A_{\rm fb}\cos\theta^*$$

$$\cos \theta^* = \frac{2(p_\ell^+ p_{\bar{\ell}}^- - p_{\ell}^- p_{\bar{\ell}}^+)}{m_{\ell\bar{\ell}} \sqrt{m_{\ell\bar{\ell}}^2 + p_{T,\ell\bar{\ell}}^2}} \operatorname{sign}(p_{z,\ell\bar{\ell}})$$

 $p_{\ell(\bar{\ell})}^{\pm} = \frac{1}{\sqrt{2}} (E_{\ell(\bar{\ell})} \pm p_{z,\ell(\bar{\ell})})$

The weak mixing angle

- The **measurement** of the **weak mixing** angle at the LHC is highly dependent on the **interplay between proton-level and quark-level** quantities (especially in the definition of the *z* axis)
 - The PDF uncertainties dominate and restrict the precision
- **These effects are reduced in** the forward region (**LHCb**), where the dilution between proton and parton level is reduced
 - A high-x parton (typically a valence quark) interacts with a low-x parton (typically a sea anti-quark)
 - Mitigating the effect of the PDF uncertainties becomes crucial through e.g. profiling in ATLAS & CMS, but not in LHCb
- At LHCb we have **published** the measurement at 7 and 8 TeV
 - \circ With 13 TeV data we expect the sensitivity to be around $5 \cdot 10^{-4}$

 $\sin^2 \theta_W^{\text{eff.}}(\text{Run } 1) = 0.23142 \pm 0.00073 \pm 0.00052 \pm 0.00056$

The weak mixing angle

- CMS has recently published $\sin^2 \theta_{\text{eff}}^{\text{lept}}(\text{CMS} @ 13\text{TeV}) = 0.23157 \pm 0.00031$
- At LHCb we still need to **process** the **data collected in Run 2 at 13 TeV**
 - Similar experimental improvements as for the W mass
 - Expected to fall in the same ballpark as the GPDs
- The **HL-LHC** has a **big potential** to drastically improve the accuracy
 - Improved detectors
 - x10 more luminosity
- **Beating** the **LEP** experiments **is possible** in the future

 $\sin^2 \theta_{\text{eff}}^{\text{lept}}(\text{LEP}) = 0.23221 \pm 0.00029$

 $\sin^2 \theta_{\rm eff}^{\rm lept}({\rm Tevatron}) = 0.23148 \pm 0.00033$

W mass measurement at LHCb

Analysis strategy

- Similar sensitivity to that of ATLAS can be achieved using the **muonic mode**
- **Template fit in a 5D space** floating the W mass and nuisance parameters
 - Based on Pythia8 and reweighted at generator level on the fly
- Use the J/ψ , Y(1S) and Z to calibrate the simulation, momentum scale and efficiencies

$$p_T^{\mu} \sim \frac{m_W}{2} \sin \theta + p_T \cos \phi$$

[JHEP 01 (2022) 036]

The result

[LHCB-FIGURE-2022-003]

The main source of improvements

- The analysis is currently being completely revisited to include data from 2017 and 2018
 - An optimization of the calibrations, momentum scale and efficiencies has been done
 - The experimental systematic uncertainties have been re-evaluated, and correlations have been taken into account more carefully
- A more **careful study** is being done on the **theoretical aspects**
 - Drop known inaccurate PDF sets or combination of generators
 - \circ $\:$ Use more accurate predictions of the cross-section NLO+NLL \rightarrow N2LO+N2LL
 - Completely revisit the QED (+FSR) modelling using POWHEG-EW: NLO(QCD) + NLO(EW)

Reducing the systematic uncertainties

[JHEP 01 (2022) 036], [LHCB-PAPI	Tentative values for the full Ru	l'entative values for the full Run 2 data set		
Source	Size (MeV)	Switch to N2LO_N2LL	Size (MeV)	
Parton distribution functions	9	Total theoretical syst. uncertainty (excludin PDFs)	g 8	
Total theoretical syst. uncertainty (excluding PDFs)	17	21 to 7 point variation Transverse momentum model	6	
Transverse momentum model	11	Angular coefficients	4	
Angular coefficients	10	QED model	4	
QED FSR model	7	better estimates of QED corrections and FSR	8	
Additional electroweak corrections	5	Momentum scale and resolution modelling	; 5	
Total experimental syst. uncertainty	10	improvement on the Muon ID, tracking and trigger efficiencies	4	
Momentum scale and resolution modelling	7	treatment of correlated Isolation efficiency	4	
Muon ID, tracking and trigger efficiencies	6	QCD background	2	
Isolation efficiency	4	Statistical	14	
QCD background	2	New background model Total uncertainty	18	
Statistical	23			
Total uncertainty Previous result (2016 data)	32	These are simple guesstimates of on some quick calculations and due	the values based to the luminosity	
			increase (uon t take them too seriously)	

m

.1

C 11 D

0 1

Conclusions

- The **LHCb** detector offers **unique capabilities** to do precision electroweak measurements in the **forward region**
 - Complementary coverage to ATLAS and CMS
 - Interesting benefits in analyses like the weak mixing angle (e.g. PDF uncertainties)
 - Helps to reduce the PDF uncertainties when doing LHC combinations
- LHCb has achieved **competitive measurements** in fundamental quantities with **Run 1 data** and only **part of Run 2 data**
 - Much more data available on tape currently being processed
 - Some related analyses are close to completion
- We foresee an exciting future ahead of us with new measurements and an increased data sample in Run 3

Thank you!