

Rare Decays of EW bosons

Keith Ulmer

University of Colorado Boulder

on behalf of the CMS and ATLAS Collaborations

Introduction

- Rare W and Z boson decays offer unique insights into standard model calculations and potential new physics contributions
- Cover three final state groups here from the CMS and ATLAS experiments
 - Z or H \rightarrow J/ $\Psi \gamma$
 - W $\rightarrow \pi \gamma$, K γ , or $\rho \gamma$
 - $Z \rightarrow 4$ leptons

Z/H \rightarrow J/ $\Psi\gamma$ and Ψ (2S) γ

- As cc resonances, J/Ψ and Ψ', offer a chance to probe the Higgs coupling to charm
- Rare SM processes with H branching fractions predicted ~10⁻⁶, and Z BFs ~10⁻⁸

Event selection

- Dedicated Trigger: 1 photon p_T > 30 and 1 muon
 p_T > 17 GeV
- Selection requirements
 - 2 isolated muons with $p_T > 18$ and 5 GeV
 - ◆ 1 isolated photon with p_T > 32 GeV
 - m(µµ) 3.0-3.2 GeV for J/Ψ; 3.60-3.75 GeV for Ψ'
- Higgs production divided into three channels:
 - VBF, heavy flavor, and gluon-gluon fusion
- Z spin correlations among Z, J/Ψ, and γ are used to build a multivariate likelihood discriminator to classify into high and low purity categories

Background estimation

- Extract signal yield from fit to $\mu\mu\gamma$ mass distribution
- EW backgrounds (non-resonant Z/H $\rightarrow \mu\mu$ decays and Z $\rightarrow \mu\mu$ + FSR photon) Modeled from MC
- QCD multi-jet background
 - Estimated directly from data with smoothly falling spectrum in sidebands
 - Different families of fit functions used for systematic variations
- Signal shapes from MC
- Separate fits for J/ Ψ and Ψ' and each Z and H category

Sample fit from $Z \rightarrow J/\Psi \gamma$ high purity category

Signal extraction

- Systematic uncertainties applied for modeling of multi-jet background, limited knowledge of detector simulation, and theoretical uncertainties
 - Total uncertainty
 dominated by limited
 statistical precision in the
 data
- The non-resonant
 Z→µµ backgrounds
 constrained in final fit
 with simultaneous fit to
 m(mu,mu) sideband.

Results

- Significant
 improvement in 95%
 CL upper limits over
 previous results
- Around 2 orders of magnitude above the SM values

Drococc	This analysis (123 fb $^{-1}$)			CMS (36 fb ⁻¹) [13]	ATLAS (139fb^{-1}) [15]
Flocess	$\mu_{obs}(\mu_{exp})$	$\sigma_{obs}(\sigma_{exp})[\mathrm{pb}]$	$\mathcal{B}_{obs}(\mathcal{B}_{exp})$	$\mathcal{B}_{obs}(\mathcal{B}_{exp})$	$\mathcal{B}_{obs}(\mathcal{B}_{exp})$
$Z \to \Psi(1S) \gamma$	$7.2 \left(8.6^{+4.1}_{-2.7}\right)$	$3.8~\left(4.4^{+1.9}_{-1.3} ight) imes 10^{-2}$	$0.6~\left(0.7^{+0.3}_{-0.2}\right)\times10^{-6}$	$1.5~(1.7^{+0.7}_{-0.5})\times 10^{-6}$	$1.2~(0.6^{+0.3}_{-0.2}) imes 10^{-6}$
$Z \to \Psi(2S) \gamma$	29 (68^{+36}_{-22})	$8~(19^{+8}_{-6}) imes 10^{-2}$	$1.3 \left(3.1^{+1.4}_{-0.9} ight) imes 10^{-6}$	—	$2.3\left(2.9^{+1.3}_{-0.8} ight) imes10^{-6}$
${\rm H} \to \Psi(1S) \gamma$	$88~(62^{+30}_{-19})$	$1.4~(1.0^{+0.5}_{-0.3}) imes 10^{-2}$	$2.6~(1.8^{+0.9}_{-0.6}) imes 10^{-4}$	$7.6~(5.2^{+2.4}_{-1.6}) \times 10^{-4}$	$2.1~(1.9^{+0.8}_{-0.5}) imes 10^{-4}$
${\rm H} \to \Psi(2{\rm S})\gamma$	970 $\left(781^{+417}_{-259}\right)$	$5.5~(4.4^{+2.3}_{-1.5})\times10^{-2}$	$9.9~\left(8.0^{+4.2}_{-2.6} ight) imes 10^{-4}$	_	$10.9\left(8.5^{+3.8}_{-2.4}\right)\times10^{-4}$

$W \rightarrow \pi \gamma$, $K\gamma$, and $\rho\gamma$

- Study understanding of W couplings
 - Radiative W decays probe QCD factorization framework
- First ever search for K γ and $\rho\gamma$
- Leading SM diagrams below:

Selection cuts

- Two signal regions: track + photon and tau + photon
 - Hadronic tau reconstruction repurposed for $\rho^+ \rightarrow \pi^0 \pi^+$ reconstruction
- Dedicated track + photon trigger
 - Photon p_T >25 GeV; isolated track p_T >30 GeV; with mass >50 GeV
- Diphoton trigger used for $\rho\gamma$ from $\pi^0 \rightarrow 2\gamma$
- Selection requirements
 - Track + photon channel
 - Isolated photons and tracks
 - $\Delta \varphi$ (track, γ) > $\pi/2$
 - Total efficiency ~5% for $\pi/K\gamma$
 - Tau-photon region:
 - Use only 1 π^+ and 1 π^0 modes from τ_h algorithm
 - ρ pT > 30 GeV, log(d0/mm) < -1.2 (short lifetime)

 - Efficiency only 0.3% (also fit this channel in track + photon)

Backgrounds

- Multi-jet (QCD)
 - Derive templates from signal region without the isolation cuts. Use up to three dimensions consisting of photon p_T, track p_T, and isolation variables
 - Generate pseudo-events from the templates to model the background
 - Use validation regions to check modeling of pseudoevents compared to data

◆ Z→e⁺e⁻

- One electron misID as photon
- One electron misID as track
- Shape taken from MC

Results

- Fit W candidate mass to extract signal
 - Simultaneous fit to both signal regions
 - Multi-jet background shape from pseudo-events derived from templates
- Largest uncertainties data statistics and multi-jet template modeling (~50%)
- W->πγ is improvement of factor of 4 over previous result
- First result for $K\gamma$ and $\rho\gamma$

	Number of events		
	Track-photon SR	Tau-photon SR	
Multijet	632000 ± 2200	43200 ± 600	
$Z \rightarrow e^+ e^-$	6100 ± 1500	-200 ± 400	
$W^{\pm} ightarrow \pi^{\pm}/K^{\pm}\gamma$	1000 ± 800	_	
$W^{\pm} ightarrow ho^{\pm} \gamma$	-100 ± 400	-90 ± 240	
Data	638962	42918	

	95% CL upper limits		
Branching fraction	Expected $\times 10^{-6}$	Observed $\times 10^{-6}$	
$\mathcal{B}(W^{\pm} ightarrow \pi^{\pm} \gamma)$	$1.2^{+0.5}_{-0.3}$	1.9	
$\mathcal{B}(W^{\pm} \to K^{\pm} \gamma)$	$1.1^{+0.4}_{-0.3}$	1.7	
$\mathcal{B}(W^{\pm} \to \rho^{\pm} \gamma)$	$6.0^{+2.3}_{-1.7}$	5.2	

$Z \rightarrow 4$ leptons

- Z to 4 lepton decays proceed in the SM through radiative decays with branching fractions ~5*10⁻⁶
- New light bosons, such as Z', with couplings to leptons can enhance the branching ratios
 - Some predictions of such new particles can help resolve the flavor anomalies and/or g-2 discrepancy
- Beyond the branching fraction, new physics also sensitive to other observables
 - Differential distributions vs kinematic variables
 - Effective Field Theory interpretation for new operators
- Show results here for
 - 4μ , $2\mu 2e$, 4e (CMS-PAS-SMP-19-007) and $2\mu 2\tau$ (arXiv:2404.18298) final states

$Z \rightarrow 4l$ measurement

- 4 μ , 2 μ 2e, and 4e channels are measured relative to Z \rightarrow 2e and Z \rightarrow 2 μ
 - reduces uncertainties on the Z production cross section and lepton reconstruction efficiencies
- $2\mu 2\tau$ channel measured through $\tau \rightarrow \mu \nu \nu$ decays and relative to 4μ final state
 - Reduce lepton reconstruction uncertainties
- Measure differential $Z \rightarrow 4\mu$, $2\mu 2e$, 4e rates vs many different kinematic quantities
 - Z masses, lepton momenta, kinematic angles, and CP-violating triple product asymmetry (angle between two Z decay planes)

Selection requirements

- Reconstruct 4μ, 2μ2e, and 4e as two opposite sign, same flavor pairs with p_T > 20, 10, 5, 5
 GeV for the four leptons
- Reconstruct $2\mu 2\tau$ in 4μ final state with lead μ $p_T > 29$ GeV and remaining μ with $p_T > 3.5$ GeV
- Leptons required to be isolated and have d_{xy} < 0.5 cm to reject candidates from heavy flavor decays
- mass(Z₁) > 12 GeV to reject upsilon backgrounds
- Efficiencies are 37%, 51%, and 70% for 4e, 2e2μ, and 4μ, and 1.3% for 2μ2τ

Background estimation

- Main backgrounds from Z→I⁺I⁻ and tt→2l2v plus two non-prompt leptons
 - Use a same-sign data (4μ, 2μ2e, 4e) and inverted isolation (2μ2τ) control regions to estimate non-prompt background from heavy flavor decays
- Other backgrounds (diboson, triboson, Higgs, ttZ) estimated from MC

Uncertainties

- Many uncertainties such as luminosity, pileup, and Z production cancel in the ratios
- Remaining sources of systematic uncertainty are dominated by the lepton finding efficiency
 - Total uncertainty ~2% for 4mu, ~4% for 2e2mu, and ~7% for 4e
 - For 2μ2τ muon finding efficiencies also largely cancel and non-prompt muon background dominates (47%)
- Final statistical and systematic uncertainties are comparable in size

$Z \rightarrow 4\mu$, $2\mu 2e$, 4e Results

Observed yields consistent with SM expectations

Туре	$N_{4\mu}$	$N_{2\mu 2e}$	$N_{4\mathrm{e}}$	$N_{4\ell}$ (total)
Observed	876	800	201	1877
Expected	806.4 ± 44.0	806.0 ± 43.2	198.1 ± 10.9	1810.5 ± 62.6
Signal	$\textbf{793.4} \pm \textbf{43.9}$	784.6 ± 42.9	195.1 ± 10.7	1773.1 ± 62.3
Background	12.9 ± 3.4	21.4 ± 4.9	3.0 ± 1.9	37.4 ± 6.3
Nonprompt	8.4 ± 3.4	16.2 ± 4.9	1.3 ± 1.9	25.9 ± 6.3
Other	$4.5\pm~0.4$	5.2 ± 0.3	$1.8\pm~0.3$	11.5 ± 0.6
Signal purity (%)	98.4 ± 1.2	97.3 ± 1.1	98.5 ± 2.3	$97.9\pm~0.6$
$N^{ m obs}/N^{ m exp}$ (%)	108.6 ± 3.8	99.3 ± 3.6	101.4 ± 7.4	103.7 ± 2.4

	${\cal B}({ m Z} ightarrow 4\ell)$ [×10 ⁻⁶]		
Channel	Expected	Observed	
4μ	1.20 ± 0.01	1.25 ± 0.04 (stat) ± 0.03 (syst)	
2µ2e	2.31 ± 0.01	2.17 ± 0.08 (stat) ± 0.06 (syst)	
4e	1.20 ± 0.01	1.16 ± 0.09 (stat) ±0.06 (syst)	
4ℓ	4.70 ± 0.02	4.67 ± 0.11 (stat) $\pm~0.10$ (syst)	

$Z \rightarrow 4\mu$, $2\mu 2e$, 4e Results

- Differential distributions in nice agreement with the model
- Also compute upper limits on additional non-SM contributions to rule out phase space for new bosons

$Z \rightarrow 2\mu 2\tau$ Results

- 95% CL upper limit on ratio of $Z \rightarrow 2\mu 2\tau$ over $Z \rightarrow 4\mu$ of 6.2 observed (10.0 expected)
 - Observed limit corresponds to 6.9x the SM expectation
- Additionally set limits on dim6 Wilson coefficients that conserve lepton flavor and involve 2 muons and 2 taus

Conclusions

- Rare EW boson decays probe SM couplings and offer unique insights into BSM contributions
 - Potential connections to heavy flavor anomalies and/or g-2 discrepancies
- Reported several results from CMS and ATLAS with many more on the way in the future