Neutrino studies with SND@LHC LHCP 2024, Boston USA

Scattering and Neutrino Detector at the LHC Christopher Betancourt on behalf of the SND@LHC collaboration

High Energy Accelerator Research Organization

June 4, 2024

Motivation

• Measure $pp \rightarrow \nu + X$ cross-section in TeV range

- Studies for potential neutrinos physics at the LHC date back to the 90s
 - Large flux in the forward region
 - Very high neutrino energy ($\sigma_{
 u} \propto E_{
 u}$)
 - \rightarrow Can be observed with small-scale LHC experiment
- Two neutrino detectors in operation at LHC's IP1 \rightarrow FASER ν and **SND@LHC**

OPEN ACCESS

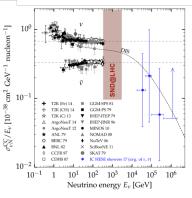
IOP Publishing

Journal of Physics G: Nuclear and Particle Physics

J. Phys. G: Nucl. Part. Phys. 46 (2019) 115008 (19pp)

https://doi.org/10.1088/1361-6471/ab3f7c

Physics potential of an experiment using LHC neutrinos

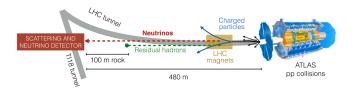

OPEN ACCESS IOP Publishing

Journal of Physics G: Nuclear and Particle Physics

J. Phys. G: Nucl. Part. Phys. 47 (2020) 125004 (18pp)

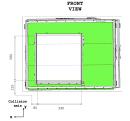
https://doi.org/10.1088/1361-6471/aba7ad

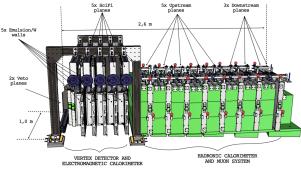
Further studies on the physics potential of an experiment using LHC neutrinos


[PRL 122 (2019) 041101]

Detector Location

- Study carried out in 2018 to determine best location for a neutrino experiment
- TI18 determined to be best location for a neutrino detector at the LHC
- 480 m from ATLAS interaction point
- Charged particles deflected by LHC magnets
- Shielding from the IP provided by 100 m of rock





The SND@LHC Detector

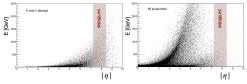
- Off-axis location ightarrow 7.2 $< \eta <$ 8.4
- Veto, SciFi Tracker and Muon system
 - select neutrino interactions
 - Identify muons
 - Reconstruct of EM/hadron showers and energy
- Emulsion Cloud Chambers
 - Identify ν interaction vertex and secondary vertices
 - Match event with electronic detectors
 - Complement e.m. energy measurement

SND@LHC main physics goals

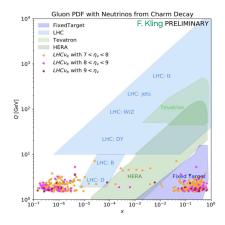
Neutrino Interactions

- Measure production of all three v species in unexplored TeV range
- First observation of $\bar{\nu}_{\tau}$

QCD with neutrinos


- Decay of charm hadrons contribute significantly to ν flux
 - \rightarrow Measure forward charm production
 - \rightarrow Constrain gluon PDF at small x

Flavour physics

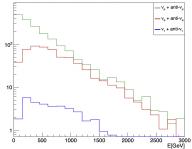

• ν_e/ν_{τ} , ν_e/ν_{μ} ratio for LFU test

Beyond the Standard Model

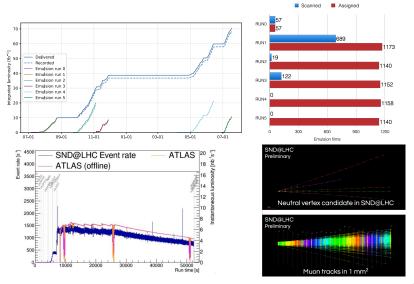
Search for feebly interacting particles

[[]N Beni et al 2019 J. Phys. G: Nucl. Part. Phys. 46 115008]

Expected neutrino rate in Run 3

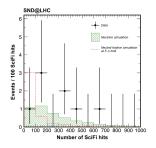

- Model neutrino production in pp collisions with DPMJET
- Propagation to SND@LHC with FLUKA model of the LHC
- GENIE neutrino interaction model
- Neutrino interactions in SND@LHC / 250 fb⁻¹
 - $u_{\mu} + \bar{
 u}_{\mu}$ charged current: 1270
 - $\nu_e + \bar{\nu}_e$ charged current: 390
 - $\nu_{\tau} + \bar{\nu}_{\tau}$ charged current: 30

Flavour	Neutrinos is $\langle E \rangle$ [GeV]	n acceptance Yield	CC neutrino $\langle E \rangle$ [GeV]	interactions Yield	NC neutrino $\langle E \rangle [GeV]$	interactions Yield
ν_{μ}	130	$3.0 imes 10^{12}$	452	910	480	270
$\bar{\nu}_{\mu}$	133	$2.6 imes 10^{12}$	485	360	480	140
	339	$3.4 imes 10^{11}$	760	250	720	80
$\frac{\nu_e}{\bar{\nu}_e}$	363	3.8×10^{11}	680	140	720	50
ν_{τ}	415	2.4×10^{10}	740	20	740	10
$\bar{\nu}_{\tau}$	380	$2.7 imes 10^{10}$	740	10	740	5
TOT		4.0×10^{12}		1690		555

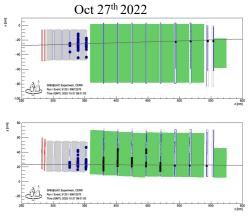

SND@LHC neutrino CC interactions

250 fb-1

Data taking and integrated luminosity

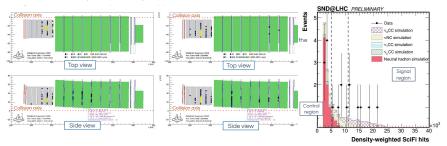

Integrated lumi: Recorded 97.3% of 70.5 fb⁻¹ delivered (2022 95%, 2023 99.7%)

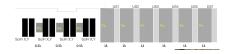
PHYSICAL REVIEW LETTERS 131, 031802 (2023)


Editors' Suggestion

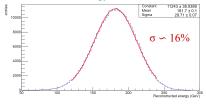
Observation of Collider Muon Neutrinos with the SND@LHC Experiment

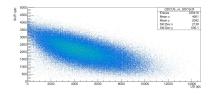
- ν_μ with electronic detectors only
- 2022 data
- 8 events observed events
- ► 8.6×10^{-2} background $\rightarrow 6.8 \sigma$ significance


 \rightarrow improved analysis + 2023: 32 events (0.25 bkg) 12 σ significance

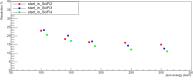

8 / 27

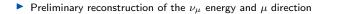
▶ ν_e CC and ν_τ CC (0 μ) + Neutral Current events

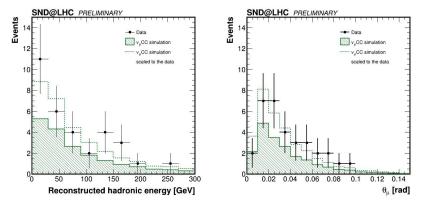

• 6 events (0.13 bkg) \rightarrow 5.8 σ significance



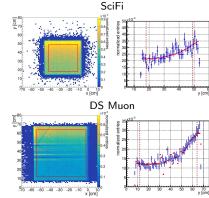
Energy resolution


Reconstructed energy for 180 GeV π





- Energy Calibration at SPS
- pions with 100-300 GeV
- mock target (Fe+Scifi)+ muon (5 US+1 DS)
- ▶ Resolution $\sim 20\%$

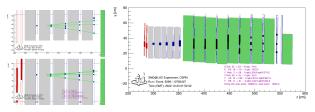


Muon flux in TI18

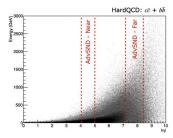
- First measurement of muons at TI18
 - Detector calibration and response
 - MC tuning for muon DIS
- Two independent measurements: SciFi and DS muon system
- Tracking: Hough Transform
- MC generated with FLUKA

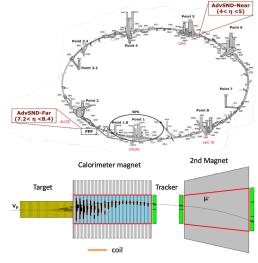
system	muon flux [10 ⁴ fb/cm ²] same fiducial area
SciFi	2.06 ± 0.01 (stat.) ± 0.12 (sys.)
DS	2.02 ± 0.01 (stat.) ± 0.08 (sys.)

[R. Albanese et al. (SND@LHC collab.), Eur.Phy.J.C 84,90 (2024)]

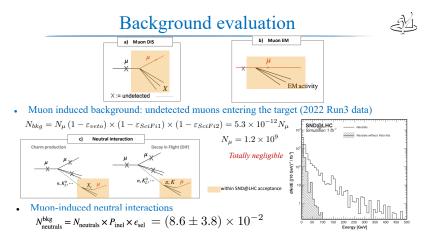

Observation of muon trident production

Trident:


 $\mu^{\pm} + N \rightarrow \mu^{+}\mu^{-}\mu^{\pm} + N$

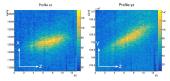

- Studies in the 60s and 70s
- Due to identical muons, sensitive to Fermi statistics
- "Background": bremsstrahlung followed by γ -conversion: $\mu^{\pm} + N \rightarrow \mu^{\pm} + N + \gamma, \gamma + N \rightarrow \mu^{-}\mu^{+} + N$
- Both types of events are interesting for SND@LHC
 - For the matching of electronic detectors with emulsion
 - Comparison with GEANT4 predictions (implemented since 2022)
 - Physics measurement, limits for exotic processes producing such a signature

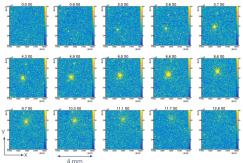
Neutrinos at the HL-LHC: AdvSND

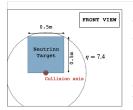

- Plans for SND detector at the HL-LHC
- AdvSND with two off-axis forward detectors
 - Far: $\eta \sim 8$ Reduce systematic uncertainties
 - Near: $\eta \sim 4.5$ link to LHCb measurements & high-energy neutrino physics
- Detector upgrades:
 - Tag muon sign with magnet
 - Replace emulsion vertex detector with electronic technology

- The LHC provides a unique possibility to measure neutrino production at the TeV scale
- SND@LHC covers a unique physics program at the LHC to study all 3 neutrino flavors
- Highest energy person-made neutrinos
- Future projects at the HL-LHC are under study

BACKUP


ν_e CC in emulsion

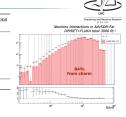

Strategy

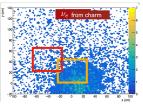

- Identify regions of high track density in the emulsions.
- Consistent with the expectation of electromagnetic shower development.
- Search for neutral vertices associated to identified showers.

Status

- Electromagnetic shower patterns identified.
- Vertex association ongoing.

Off-axis configuration


Flavour	CC neutrino interactions Yield	NC neutrino interactio Yield
ν_{μ}	6.9×10^{4}	2.0×10^4
$\frac{\nu_{\mu}}{\bar{\nu}_{\mu}}$ ν_{e} $\bar{\nu}_{e}$	2.5×10^{4}	9.0×10^{3}
ν_e	2.1×10^{4}	6.5×10^{3}
$\bar{\nu}_e$	1.0×10^{4}	4.0×10^{3}
ν_{τ} $\bar{\nu}_{\tau}$	950	300
$\bar{\nu}_{\tau}$	580	240
TOT	1.3×10^5	4.1×10^4


Active surface: $\sim 50 \times 50 \text{ cm}^2$ Tungsten mass $\sim 2 \text{ tons}$

Partial overlap with FASER useful for data comparison/systematics Gain in statistics × 4 w.r.t. current location for equal luminosity > 150k ν interactions

Vertex detector: combination of silicon trip and pixel detectors Ongoing studies on optimal configuration and e/π^0 separation performance



Advanced NEAR: neutrino expectation

Expectations in 3000 fb-1 CC DIS Interactions Scattering and Neutrino Detector Flavour total (DPMJET) cc-bar (DPMJET) cc-bar (PYTHIA8) bb-bar (PYTHIA8) $\nu_{\mu} + \overline{\nu}_{\mu}$ 17500 1025 950 47 1800 1100 975 50 $\nu_e + \overline{\nu}_e$ $\nu_r + \overline{\nu}_r$ 75 75 75 10 Total 19375 2200 2000 107

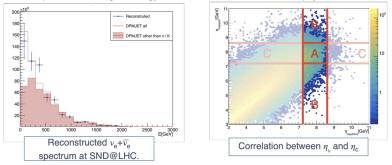
AdvSND-Near

Autone neur					
η	[4.0, 4.62]				
φ	3.5 %				
mass (ton)	5				
surface (cm ²)	147x53.5				
distance (m)	87.2				

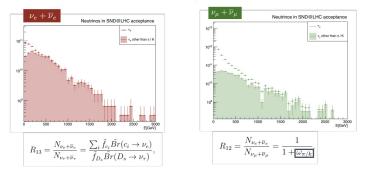
LHCb ~ 180k charmed hadrons <u>https://link.springer.com/article/10.1007/JHEP05(2017)074</u> in the 4 to 4.5 η range \rightarrow ~ 18k ν_e

Data acquisition

- All electronic detectors are read out by TOFPET2-based front-end boards
 - Low signal threshold: 0.5 p.e.
 - Good timing: 40 ps
 - 128 channels
- DAQ boards based on Cyclone V FPGA
 - Run at 160 MHz, aligned with the LHC clock
 - Collect data from four front-end boards (512 channels)
 - Get clock from LHC time, trigger and control system (TTC) via optical fibre
 - All hits above threshold sent to DAQ server over ethernet
- DAQ server
 - Receives hits from DAQ boards, 17k channels in total
 - Runs timestamp-based event-building code
 - Applies online noise filter conditions based on event topology
 - Saves data to disk in ROOT format



Measurement	Uncertainty	
	Stat.	Sys.
$pp \rightarrow \nu_e X$ cross-section	5%	15%
Charmed hadron yield	5%	35%
ν_e/ν_τ ratio for LFU test	30%	22%
ν_e/ν_μ ratio for LFU test	10%	10%
NC/CC ratio	5%	10%

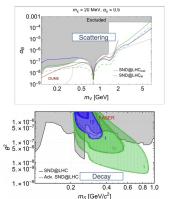

Neutrinos from charm production

- Expect 90% of $v_e + v_e$ to originate from charm decays.
 - \circ SND@LHC $v_e + v_e$ are a probe of forward charm production.
 - Forward charm production measurement constrains gluon PDFs at very low x (10-6).
- Impact on future higher energy hadron colliders and neutrino astrophysics.

LFU tests

- Charm hadron decays contribute to the flux of all three types of neutrinos at SND@LHC.
- The detector has excellent flavour identification capabilities.
- Unique opportunity to test lepton flavour universality with neutrinos.
 - $_{\odot}$ Take ratios of event rates: v_{e}/v_{τ} and v_{e}/v_{μ} .

Feebly Interacting Particles (FIPs)


SND@LHC is sensitive to new dark sector particles.

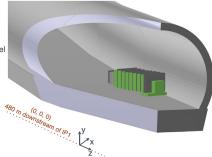
- Scattering in the detector.
 - E.g., scalars interacting with nucleons via a leptophobic portal.

- Decaying in the detector.
 - Dark scalars, heavy neutral leptons or dark photons decaying into a pair of charged tracks.

J. High Energ. Phys. 2022, 6 (2022)

Experiment operation

- Normal detector operation can be performed remotely.
 - Control system automatically recovers from most frequent hiccups.
- 24/7 data taking shifts during physics runs.
 - Shifter must be in CERN area.
 - Physical control room available.
- Emulsion preparation and development shifts.



Software and analysis tools

- Fluxes at LHC TI-18 tunnel generated with DPMJET + Fluka model of the LHC.
 - Maintained by CERN Sources, Targets and Interactions Group SY/STI.

In sndsw FairROOT based software:

- Propagation of particles through the TI-18 tunnel and detector modeled with Geant4.
 - Digitization models.
- Neutrino event generation with GENIE.
- Muon DIS event generation with PYTHIA.
- Analysis tools:
 - Electronic detector track reconstruction.
 - Emulsion reconstruction with FEDRA.
 - o Detector alignment tools.
- Online data quality monitoring.

