

QCD and Neutrino Physics for Small LHC experiments

Juan Rojo, VU Amsterdam & Nikhef

Small LHC experiments

Small LHC experiments

Far-Forward

Forward Ungoing

FASER(v)

SND@LHC

TOTEM

LHCf

MoEDAL

- Search for magnetic monopoles
- Search for highly ionising particles

- Forward neutrino detection
- Search for FIPs & LLPs

- Forward particle production
- Total, elastic, and diffractive scattering

Small LHC experiments

FASER2(v)

Future & Proposed FIPs, LLPs, neutrinos

AdvSND@LHC

FLArE Neutrino & light DM

SMOG@LHCb & LHCSpin

SHiP/BDF (incl SND)

QCD, hadron structure, CRs

The Forward Physics Facility

A proposed new CERN facility to achieve the full potential of LHC far-forward physics

Complementary suite of far-forward experiments, operating concurrently with the HL-LHC
 Start civil engineering during LS3 or shortly thereafter, to maximise overlap with HL-LHC
 Positive outcome of ongoing site investigation studies (geological drill down to the cavern depth)

LHC far-forward experiments

SND@LHC

- FASER2(v) and FLArE would be installed within this new Forward Physics Facility
- FASER will also operate during Run-4 (without the neutrino detector)
- Focus on QCD & neutrino physics

Neutrinos from LHC Collisions

Neutrinos at the LHC

There are **guaranteed physics targets** to be reached should we instrument the forward region of the LHC, based on exploiting **the most energetic, high-intensity neutrino beam ever produced in a laboratory**

Collider counterpart of high-energy cosmic rays interactions, including prompt neutrino flux

Neutrinos at the LHC

electron neutrinos mostly from *D*-meson decays above 500 GeV, below it mostly from kaon decays

muon neutrino flux dominated by pion & kaon decays

tau neutrinos entirely from D-meson decays

Neutrinos at the LHC

The dawn of the LHC neutrino era

FASER recently presented the first measurement of cross-sections of collider (TeV) neutrinos

Demonstrates the excellent performance of the experiment for neutrino interaction measurements

Paves the way to more refined measurements, including **multi-differential** (structure functions)

Ultimately FASER and SND@LHC neutrino measurements will be limited by statistics

Detector				Number of CC Interactions		
Name	Mass	Coverage	Luminosity	$ u_e + \bar{\nu}_e $	$ u_{\mu}\!\!+\!ar{ u}_{\mu}$	$ u_{ au} + ar{ u}_{ au}$
$FASER\nu$	1 ton	$\eta\gtrsim 8.5$	$150 { m ~fb^{-1}}$	901 / 3.4k	4.7k / 7.1k	15 / 97
SND@LHC	800kg	$7 < \eta < 8.5$	$150 { m fb^{-1}}$	137 / 395	790 / 1.0k	7.6 / 18.6

Physics with LHC neutrinos

unique coverage of **TeV energy region**, high-statistics for **all three neutrino flavours** anomalous neutrino couplings, **lepton-flavour universality** tests with neutrinos

Physics with LHC neutrinos

Probe **small-x QCD** (e.g. non-linear dynamics) in uncharged regions

- Provide a laboratory validation of **muon puzzle** predating **cosmic ray physics**
- New channels for BSM searches e.g. via sterile neutrino oscillations

Neutrino DIS at the LHC

Extend CERN infrastructure with an (effective) Neutrino-Ion Collider by ``recycling" an otherwise discarded beam

Charged-current counterpart of the Electron-Ion Collider covering same region of phase space

PDF constraints from LHC neutrinos

- Impact on proton PDFs quantified by the Hessian profiling of PDF4LHC21 (xFitter) and by direct inclusion in the global NNPDF4.0 fit
- Most impact on up and down valence quarks as well as in strangeness, ultimately limited by systematics
- Uncertainties in incoming neutrino fluxes subdominant, once constrained *in-situ* at FASER & FPF

Constraints on forward hadron production

- Forward particle production at the LHC is affected by large model uncertainties
- Specially problematic for neutrinos from charm
- Can be constrained in-situ by the LHC far forward experiments

- Combined determination of the proton PDFs and the normalisation of muon neutrino flux
- FASER (Run-3) fixes flux normalisation to 6%, FASER2 pins it down at the few-permille level

Constraints on small-x PDFs

Generate pseudo-data for electron neutrino cross-sections at different rapidities

Solution Constraints small-x PDFs down to 10-7, beyond the reach of any other (laboratory) experiment

Direct measurement of the prompt neutrino flux limiting astrophysical measurements at IceCube

Tuning Monte Carlo simulations

M. van Beekveeld et al (in preparation)

- Interpretation of LHC neutrino experiments demands precise Monte Carlo event generators
- Neutrino MC simulations tuned to LHC data would be valuable for atmospheric and astrophysical neutrino experiments
- NLO QCD simulations based on POWHEG with neutrino PDFs enable accurate simulations of the final state in high-energy neutrino scattering

Impact on BSM Searches at the HL-LHC

Higgs couplings

- Sommon misconception: the BSM program of the FPF is limited to **FIPs/LLPs** and related light BSM scenarios
- Rich direct high-pt BSM program via TeV neutrino cross-sections and interactions (e.g. via EFTs)
- Rich indirect high-pt BSM program via PDF constraints essential for BSM searches at the HL-LHC

Direct Searches

- The HL-LHC will also extend the mass reach in direct searches for new heavy particles e.g. a Z'
- Large-x PDFs represent the dominant theory uncertainty limiting these analysis
- Again, PDF constraints at the FPF enable improved background modelling for BSM searches at HL-LHC

SMEFT analyses

Global PDF determinations are based on Standard Model theoretical calculations:

$$\mathscr{L}_{ij}^{(\mathrm{sm})}(M,\sqrt{s},\boldsymbol{\theta}) = \frac{1}{s} \int_{-\ln\sqrt{s/M}}^{\ln\sqrt{s/M}} \mathrm{d}y f_i^{(\mathrm{sm})}\left(\frac{Me^y}{\sqrt{s}},\boldsymbol{\theta}\right) f_j^{(\mathrm{sm})}\left(\frac{Me^{-y}}{\sqrt{s}},\boldsymbol{\theta}\right)$$

PDF parameters from likelihood maximisation: BSM effects potentially ``fitted away" into PDFs

$$\chi^{2}\left(\boldsymbol{\theta}\right) = \frac{1}{n_{\text{dat}}} \sum_{i,j=1}^{n_{\text{dat}}} \left(\sigma_{i,\text{th}}(\boldsymbol{\theta}) - \sigma_{i,\text{exp}}\right) \left(\text{cov}^{-1}\right)_{ij} \left(\sigma_{j,\text{th}}(\boldsymbol{\theta}) - \sigma_{j,\text{exp}}\right)$$

SMEFT analyses

What is the underlying short-distance theory is not the SM but instead the SMEFT?

In the case of new physics described within the dimension-6 SMEFT framework:

$$\widetilde{\sigma}_{ij}^{(\text{smeft})}(\hat{s}, \alpha_s, \boldsymbol{c}/\Lambda^2) = \widetilde{\sigma}_{ij}^{(\text{sm})}(\hat{s}, \alpha_s) \left(1 + \sum_{m=1}^{N_6} c_m \frac{\kappa_m^{ij}}{\Lambda^2} + \sum_{m,n=1}^{N_6} c_m c_n \frac{\kappa_{mn}^{ij}}{\Lambda^4} \right)$$

SMEFT PDFs defined as PDFs extracted from the data when SMEFT used to model partonic hard-scattering

Given experimental constraints, how different are SM and SMEFT PDFs? Is there a risk to fit away EFT effects into the PDFs?

SMEFT analyses with FPF data

- Solution \mathbb{P}^{2} Assume a BSM scenario with an extra W' gauge boson with $M_{W'} = 13.8 \text{ TeV}$
- Generate HL-LHC pseudo-data (NC & CC Drell-Yan) for this model and include in global PDF fit
- Data-theory agreement unchanged, but the qqbar luminosity shift far beyond PDF uncertainties.
- Why? Because anti-quark PDFs at large-x poorly constrained, "fitting away" BSM signals!
- Result: miss BSM signals in SMEFT analysis & spurious effects in ``SM" processes (e.g. diboson)

Hammou, Madigan, Mangano, Mantani, Morales, Ubiali, 2307.10370

SMEFT analyses with FPF data

- Low-energy measurements constraining large-x PDFs to disentangle QCD from BSM effects
- Including FPF neutrino DIS measurements would break this PDF/BSM degeneracy!
- Essential input to realise the full BSM search potential of the HL-LHC

Hammou, Madigan, Ubiali, WIP

QCD and Neutrino Physics for Small LHC experiments FCC

J. Adhikary et al (in preparation)

The Future Circular Collider

A proposed new 91-km tunnel in the CERN site

First phase: electronpositron collider from the Z-pole to ttbar threshold

Second phase: protonproton collider at 100 TeV or beyond, with pA and AA options

LHC neutrinos and FCC-pp

- FCC-pp would be a small-x machine, even Higgs and EWK sensitive to small-x QCD
- LHC neutrinos: laboratory to test small-x QCD for dedicated FCC-pp physics and simulations
- Current projections show a marked PDF error reduction on FCC-pp cross-sections thanks to constraints from LHC neutrinos

FPF@FCC

- An FPF-like suite of far-forward experiments could be integrated in FCC design from day one
- Benefit from i) higher CoM energy, ii) higher luminosity, iii) larger/better detectors

Event rates

Up to 1B muon neutrinos & 30M tau neutrinos

- Sizable flux up to neutrinos with 40 TeV
- Access neutrino crosssections at multi-TeV energies
- test Lepton Flavour Universality for the three neutrino generations
- Search for anomalous interactions with permille precision

Small-x QCD and nuclear physics

Up to 200K neutrinos from proton-lead collisions

- Reaching ultra-small-x: sensitivity to extreme QCD phenomena (e.g. non-linear dynamics) as well as nuclear structure in unconstrained regions
- Direct input for astroparticle physics experiments

32 + first polarised DIS experiment with neutrinos!

Summary and outlook

LHC neutrinos realise an exciting program in a broad range of topics from BSM and long-lived particles to neutrinos, QCD and hadron structure, and astroparticle physics

- Measurements of neutrino DIS structure functions at the LHC open a new probe to proton and nuclear structure with a charged-current counterpart of the Electron Ion Collider
- Measuring LHC neutrino fluxes enables unprecedented probe of small-x QCD and forward hadron production, instrumental for astroparticle physics but also future colliders
- LHC neutrinos enable tuning neutrino MC event generators in the controlled laboratory setup

In addition to FIP searches, the FPF provides unique constraints for high-p_T searches at LHC

An FPF@FCC would accumulate **unprecedented high-energy neutrino scattering samples**, including the first neutrinos from proton-lead collisions and from scattering on polarised targets