Diboson and polarization measurements in CMS

Giulia Sorrentino On behalf of the CMS Collaboration LHCP2024 3-7 June 2024

Work supported by

U.S. DEPARTMENT OF

Powerful tests of the Standard Model

- Analysis of boson properties can provide precise measurements of fundamental SM parameters
- Diboson measurements can probe the EWK sector of the SM at TeV scale
 - Background for Higgs analysis and for **New Physics (mono-photon searches)**
 - Indirect search for New Physics through anomalous gauge boson couplings

Outlook

- Polarization
 - Tau polarization in Z decays <u>Published on JHEP</u>
- Diboson
 - **ZZ+jets** <u>Submitted to JHEP</u>
 - $\gamma\gamma \rightarrow \tau\tau$ Submitted to ROPP

- $Z(\rightarrow vv)y$ <u>CMS-PAS-SMP-22-009</u>
- WW@13.6 TeV <u>CMS-PAS-SMP-24-001</u>

In preparation to be submitted

VBS VV results discussed in a dedicated talk

- pp collisions@13 TeV, 2016 data (35.9 fb⁻¹)
- Measurement of the average τ polarization
- Convert polarization into $sin^2\theta^{eff}W$

$$\langle \mathcal{P}_{\tau} \rangle = \frac{N(Z \to \tau_{\rm R}^- \tau_{\rm L}^+) - N(Z \to \tau_{\rm L}^- \tau_{\rm R}^+)}{N(Z \to \tau_{\rm R}^- \tau_{\rm L}^+) + N(Z \to \tau_{\rm L}^- \tau_{\rm R}^+)},$$

4 decay channels 11 categories

Discriminator choice based on likelihood scans

Channel	Category	Discriminato	or
$ au_{\rm e} au_{\mu}$	$e + \mu$	$m_{\rm vis}({ m e},\mu)$	visible mass
$\tau_{\rm e} \tau_{\rm h}$	$\mathbf{e} + \mathbf{a}_1$ $\mathbf{e} + \boldsymbol{\rho}$ $\mathbf{e} + \boldsymbol{\pi}$	$egin{aligned} & \omega(a_1) \ & \omega_{\mathrm{vis}}(ho) \ & \omega(\pi) \end{aligned}$	optimal observable with SVFIT visible optimal observable optimal observable with SVFIT
$\tau_{\mu}\tau_{\rm h}$	$\begin{array}{l} \mu + \mathbf{a}_1 \\ \mu + \rho \\ \mu + \pi \end{array}$	$egin{array}{l} \omega({f a}_1) \ \omega_{ m vis}(ho) \ \omega(\pi) \end{array}$	optimal observable with SVFIT visible optimal observable optimal observable with SVFIT
$ au_{\rm h} au_{\rm h}$	$\begin{array}{l} \mathbf{a}_1 + \mathbf{a}_1 \\ \mathbf{a}_1 + \pi \\ \rho + \tau_h \\ \pi + \pi \end{array}$	$egin{aligned} &m_{ ext{vis}}(extbf{a}_1, extbf{a}_1)\ &\Omega(extbf{a}_1, \pi)\ &\omega_{ ext{vis}}(ho)\ &m_{ ext{vis}}(\pi, \pi) \end{aligned}$	visible mass combined optimal observable with SVFIT visible optimal observable (for leading ρ) visible mass

- Modified SV_{FIT} for τ decay reconstruction
- BDT MVA algorithm applied in addition to the HPS algorithm

• Helicity information extracted from angular kinematics of tau decay products

- For spin-1 intermediate resonances, θ is not sensitive enough \rightarrow 3 more angles α , β and γ
- 1D fit to a unique optimal variable $\omega(\theta, \alpha, \beta, \gamma)$

2t combination
$$\longrightarrow \Omega = \frac{\omega_1 + \omega_2}{1 + \omega_1 \omega_2}$$

- Templates for right- and left-handed τ

 $\langle P_{\tau} \rangle_{75-120 \text{ GeV}} = -0.140 \pm 0.006(stat) \pm 0.014(syst)$

• **Stability** of extracted polarisation wrt eta

Published on JHEP

• Correct $\langle P_T \rangle$ to the polarization value at the Z pole $\rightarrow P_T(Z) = -A_T$

• Most precise measurement of A_T at the LHC

Precision comparable to the SLD experiment

Extracting $sin^2 \theta^{eff}_W$ as $P\tau(Z) = -A\tau = -2(1-4 sin^2 \theta^{eff}_W)$

$sin^2 \theta^{eff}_W = 0.2319 \pm 0.0008(stat) \pm 0.0018(syst)$ $= 0.2319 \pm 0.0019$

In agreement with SM

ZZ+jets production

- Four isolated leptons from PV + contribution from FSR photon with $\Delta R(I,\gamma) < 0.5$
- 2 on-shell Z candidates built from OS, same flavor leptons
- 40 < m_{Z1} < 120 GeV, 4 < m_{Z2} < 120 GeV
- p_{T} jets > 30 GeV and $\Delta R(jet, l/\gamma) > 0.4$

Very low background

- Z and WZ production + jets estimated using control regions (1/2%)
- ttZ and VVV from simulation (1-1.5%)

pp collisions@13 TeV and Full Run2 statistics (138 fb⁻¹)

- •qq → ZZ: MadGraph5 aMC@NLO+POWHEG 2.0+NNLO K-factor
- $gg \rightarrow ZZ$: LO with MCFM+QCD NLO K-factor
- EWK ZZ + 2 jets: MadGraph at LO
- **HZZ:** POWHEG at NLO

500

200

Data / Pred.

ZZ+jets production

• Data unfolded using the iterative D'Agostini's method

Giulia Sorrentino

ττ photon-induced production

Giulia Sorrentino

- pp collisions@13 TeV and Full Run2 statistics (138 fb⁻¹)
- First observation of ττ photon-induced production
- •Limits on the τ anomalous electromagnetic momenta

ττ photon-induced production

• m_{vis} and N_{tracks} distributions after ML fit, assuming SM τ momenta

5.3 σ observed (6.5 σ expected)

First $\gamma\gamma \rightarrow \tau\tau$ observation in pp runs

Giulia Sorrentino

Fiducial region

	eμ	${ m e} au_{ m h}$	$\mu au_{ m h}$	$\tau_{\rm h} \tau_{\rm h}$
$p_{\rm T}^{\rm e}$ (GeV)	> 15/24	> 25	—	—
$ \eta^{ m e} $	< 2.5	< 2.5	_	—
$p_{\rm T}^{\mu}$ (GeV)	> 24/15	—	> 21	—
$ \eta^{\mu} $	< 2.4	—	< 2.4	—
$p_{\mathrm{T}}^{\tau_{\mathrm{h}}}$ (GeV)	—	> 30	> 30	> 40
$ \eta^{ au_{ m h}} $	—	< 2.3	< 2.3	< 2.3
$\Delta R(\ell,\ell')$	> 0.5	> 0.5	> 0.5	> 0.5
$m_{\rm T}({ m e}/\mu, ec{p}_{\rm T}^{\rm miss})$ [GeV]	—	< 75	< 75	—
Α	< 0.015	< 0.015	< 0.015	< 0.0
$m_{\rm vis}$ (GeV)	< 500	< 500	< 500	< 500
$N_{ m tracks}$	0	0	0	0

 $\sigma^{obs} = 12.4 + 3.8 - 3.1 \text{ fb}$

Compatible with predictions: $\sigma^{exp} = 16.5 \pm 1.5 \text{ fb} (GAMMA-UPC)$

TT photon-induced production

• a_T and d_T parameterized within SMEFT framework

- Exactly 1 high-p_T (>225 GeV) photon + MET
- BDT algorithm to identify high-p⊤ photons (92% efficiency)

- pp collisions@13 TeV, Full Run2 statistics (138 fb⁻¹)
- Fiducial and differential xsec measurement
- Limits on aNTGCs $h_3^{Z,\gamma}$ and $h_4^{Z,\gamma}$
- True photons bkg:
 - γ +jets, VV (from MC), W(\rightarrow Iv) γ (from CR in data)
- Fake photons bkg:
 - $e \rightarrow \gamma$, jet $\rightarrow \gamma$ (data-driven)
 - Particles interacting with ECAL barrel's APDs (data-driven)
 - **Beam Halo in ECAL endcaps** (data-driven)

- New BH tagger built using energy deposits
- **Forward** $(1.6 < |\eta| < 2.5)$ photons included in the analysis for the first time

Likelihood-based unfolding technique

Fiducial region

Exactly 1 photon passing

- •p_T > 225 GeV
- |η| < 1.4442 (EB) or 1.566<|η|<2.5 (EE)

MET requirements

- E_T^{miss} > 200 GeV
- • $p_T^{\gamma}/E_T^{miss} < 1.4$
- $\Delta \phi$ (γ , E_T^{miss}) > 2

Fiducial xsec (fb)

Region	Measured	NLO (Madgraph5)	NNLO (M
Barrel $ \eta < 1.4442$	$16.74\substack{+1.05\\-0.99}$	$19.61\substack{+0.73 \\ -0.69}$	19.33_
Endcaps $1.4442 < \eta < 2.5$	$7.84\substack{+0.76 \\ -0.70}$	$6.45\substack{+0.27\\-0.31}$	6.21^{+0}_{-0}
Combination of barrel and endcaps	$23.32^{+1.40}_{-1.32}$	$26.07\substack{+0.96 \\ -0.97}$	25.45_

In agreement with SM

- Effective vertex approach
- Limits on h_1^V and h_2^V are comparable to those on h_3^V and h_4^V

$$\begin{split} \Gamma_{Z\gamma V}^{\alpha\beta\mu}(q_1, \ q_2, \ p) = & \frac{-e(p^2 - m_V^2)}{m_Z^2} \left\{ \begin{pmatrix} h_1^V (q_2^\mu g^{\alpha\beta} - q_2^\alpha g^{\mu\beta}) + \begin{pmatrix} h_2^V \\ m_Z^2 \end{pmatrix} p^\alpha \left[(pq_2)g^{\mu\beta} - q_2^\mu p^\beta \right] + \\ & + \begin{pmatrix} h_3^V e^{\mu\alpha\beta\rho} q_{2\rho} - \begin{pmatrix} h_4^V \\ m_Z^2 \end{pmatrix} p^\alpha \epsilon^{\mu\beta\rho\sigma} p_\rho q_{2\sigma} \right\}, \end{split}$$

These results

Parameter	Expected	Observed
$h_3^{\gamma} imes 10^4$	(-2.8, 2.9)	(-3.4, 3.5)
$h_4^\gamma imes 10^7$	(-5.9, 6.0)	(-6.8, 6.8)
$h_3^Z \times 10^4$	(-1.8,1.9)	(-2.2, 2.2)
$h_4^Z \times 10^7$	(-3.7, 3.7)	(-4.1, 4.2)

ATLAS@8TeV

Parameter	Limit 95% CL		
	Measured	Expected	
h_3^{γ}	$(-3.7 \times 10^{-4}, 3.7 \times 10^{-4})$	$(-4.2 \times 10^{-4}, 4.3 \times 10^{-4})$	
h_3^Z	$(-3.2 \times 10^{-4}, 3.3 \times 10^{-4})$	$(-3.8 \times 10^{-4}, 3.8 \times 10^{-4})$	
h_4^{γ}	$(-4.4 \times 10^{-7}, 4.3 \times 10^{-7})$	$(-5.1 \times 10^{-7}, 5.0 \times 10^{-7})$	
h_4^Z	$(-4.5 \times 10^{-7}, 4.4 \times 10^{-7})$	$(-5.3 \times 10^{-7}, 5.1 \times 10^{-7})$	

WW production at 13.6 TeV

- Events selected with **one electron and one muon** (OS) and categorized into WW SR + 6 CRs
- xsec extracted from simultaneous ML fits over SR+CRs
- 1st fit with one POI (inclusive xsec)

$\sigma^{obs} = 125.7 \pm 2.3(stat) \pm 4.8(syst) \pm 1.8(lumi)$ pb

Compatible with predictions:

 $\sigma^{exp} = 125.8 \pm 3.7 \text{ pb}$ (QCD NNLO and EW NLO from MATRIX)

pp collisions@13.6 TeV, 2022 data (34.8 fb⁻¹) Inclusive and normalized xsec measurement

15

20

Data/SM

Events / bi

0.9

20

Data/SM

WW production at 13.6 TeV

• 2^{nd} fit with 4 POIs: inclusive fiducial xsec + normalized cross sections (0, 1, \geq 2 jets)

Number of jets

Summary

CMS has a strong and comprehensive program of SM measurements

- Cross section measurements in good agreement with theoretical predictions
- More stringent constraints on aNTGCs have been provided, exploiting novel approaches and larger datasets
- First observation of $\gamma\gamma \rightarrow \tau\tau$ in pp collisions

Produced several of the most precise results at the LHC

- A_{τ} presented here, but there are many more
- Limits on anomalous magnetic moment of the τ lepton 5 times better than at LEP

dillo

(a) $\alpha(\tau \rightarrow \nu_{\tau} + \rho, a_1)$

ττ photon-induced production

• a_T and d_T parameterized within SMEFT framework

$$\mathbf{a}_{\tau} = \mathbf{a}^{\mathbf{SM}_{\tau}} + \overbrace{\mathbf{\delta}\mathbf{a}_{\tau}}^{\mathbf{\delta}\mathbf{a}_{\tau}} \rightarrow \delta a_{\tau} = \frac{2m_{\tau}}{e} \frac{\sqrt{2}v}{\Lambda^{2}} \operatorname{Re}\left[C_{\tau\gamma}\right]$$
$$\mathbf{d}_{\tau} = \mathbf{d}^{\mathbf{SM}_{\tau}} + \overbrace{\mathbf{\delta}\mathbf{d}_{\tau}}^{\mathbf{\delta}\mathbf{d}_{\tau}} \rightarrow \delta d_{\tau} = \frac{\sqrt{2}v}{\Lambda^{2}} \operatorname{Im}\left[C_{\tau\gamma}\right]$$
$$C_{\tau\gamma} = \left(\cos\theta_{W}C_{\tau B} - \sin\theta_{W}C_{\tau W}\right)$$

Recast results to make exclusion plots of Wilson coefficients

ττ photon-induced production

• a_T and d_T parameterized within SMEFT framework

22

