

Experimental overview of VBS/ VBF measurements at the LHC (with Run 2 data)

Pietro Govoni, INFN and University of Milano - Bicocca on behalf of the ATLAS and CMS Collaborations

P. Govoni - Experimental overview of VBS/VBF measurements at the LHC - LHCP 2024, Boston

P. Govoni - Experimental overview of VBS/VBF measurements at the LHC - LHCP 2024, Boston

P. Govoni - Experimental overview of VBS/VBF measurements at the LHC - LHCP 2024, Boston

see A. Apyan's talk

vector boson scattering see M. Zaro's talk

EW and QCD production coexistent in the signal region

 q_2

 q_1

interfering

- the gauge-invariant crosssection is the sum of the two contributions
- perform inclusive measurements

P. Govoni - Experimental overview of VBS/VBF measurements at the LHC - LHCP 2024, Boston

P. Govoni - Experimental overview of VBS/VBF measurements at the LHC - LHCP 2024, Boston

P. Govoni - Experimental overview of VBS/VBF measurements at the LHC - LHCP 2024, Boston

low QCD activity between tag jets, since there's no color flow between the two protons

background understanding see G. Sorrentino's and J Roloff's talks

P. Govoni - Experimental overview of VBS/VBF measurements at the LHC - LHCP 2024, Boston

MET + jets

electroweak $W\gamma \rightarrow \ell \nu \gamma j j$ in ATLAS

- observation sensitivity fitting the distribution of two averaged DNNs
- dimension-8 EFT limits (f_{T3} and f_{T4} studied for the first time)

P. Govoni - Experimental overview of VBS/VBF measurements at the LHC - LHCP 2024, Boston

background control regions defined based on the jet counting in the rapidity gap

EW W $\gamma \rightarrow \ell \nu \gamma j j$ in CMS **observed** significance of 6.0 s.d.

$\sigma_{\rm EW}^{\rm fid} = 23.5 \pm 2.8 \,({\rm stat})^{+1.9}_{-1.7} \,({\rm theo})^{+3.5}_{-3.4} \,({\rm syst}) \,{\rm fb} = 23.5^{+4.9}_{-4.7} \,{\rm fb}$ $\sigma_{\rm EW+OCD}^{\rm fid} = 113 \pm 2.0 \,({\rm stat})^{+2.5}_{-2.3} \,({\rm theo})^{+13}_{-13} \,({\rm syst}) \,{\rm fb} = 113 \pm 13 \,{\rm fb}$

P. Govoni - Experimental overview of VBS/VBF measurements at the LHC - LHCP 2024, Boston

EW $Z\gamma \rightarrow \ell \ell \gamma j j$ production

- cross-section measurements, unfolded distributions
- limits on BSM quartic neutral gauge couplings

P. Govoni - Experimental overview of VBS/VBF measurements at the LHC - LHCP 2024, Boston

arxiv:2305.19142 arxiv:2106.11082 ATLAS $Z\gamma \rightarrow \nu\nu\gamma$ arxiv:2208.12741

EW ZZ $\rightarrow 4\ell$ production

- NLO pQCD signal model
- fit on multivariate discriminants (MD)
- sensitivity larger than 5 s.d.
- statistically dominated

	$\mu_{ m EW}$	$\mu_{ ext{QCD}}^{\ell\ell\ell\ell jj}$	Significan
lllljj	0.97 ± 0.27	0.99 ± 0.22	5.5
llvvjj	0.7 ± 0.5	_	1.3
Combined	0.92 ± 0.24	0.99 ± 0.22	5.7

• inclusive fiducial cross-sections measurement:

	Measured fiducial σ [fb]	Predicted fiducial σ [fb]
$\ell\ell\ell\ell j j$	$1.27 \pm 0.12(\text{stat}) \pm 0.02(\text{theo}) \pm 0.07(\text{exp}) \pm 0.01(\text{bkg}) \pm 0.02(\text{lumi})$	$1.26 \pm 0.04(\text{stat}) \pm 0.22(\text{theo})$
llvvjj	$1.13 \pm 0.28(\text{stat}) \pm 0.04(\text{theo}) \pm 0.06(\text{exp}) \pm 0.15(\text{bkg}) \pm 0.02(\text{lumi})$	$1.11 \pm 0.01(\text{stat}) \pm 0.12(\text{theo})$

P. Govoni - Experimental overview of VBS/VBF measurements at the LHC - LHCP 2024, Boston

arxiv:2004.10612

CMS: <u>arxiv:2008.07013</u>

EW WZ $\rightarrow 3\ell\nu$ production

- extensive use of **MVA techniques**
- main uncertainties from theory modelling and jet reco
- dim-8 EFT limits comparable with CMS ones

P. Govoni - Experimental overview of VBS/VBF measurements at the LHC - LHCP 2024, Boston

arxiv:2403.15296

$\sigma_{EW} = 0.37 \pm 0.07$ fb $\sigma_{QCD} = 1.09 \pm 0.14 \text{ fb}$ score **ATLAS** Data — MadGraph (scaled) $\sqrt{s} = 13 \,\mathrm{TeV}, 140 \,\mathrm{fb}^{-1}$ •••• WZjj-EW × 1.0 $W^{\pm}Zjj \rightarrow \ell' \nu \ell \ell jj$ --- $WZjj-QCD \times 0.71$ \square മ Sherpa 2.2.12 (scaled) $\sigma^{\text{fid.}/\Delta}$ unfolded BDT distribution, obtained training 10 the same BDT at particle level, statistically -0.50.5 0 -1 dominated BDT score

EW W+W- $\rightarrow \ell^+ \nu \ell^- \nu$ cross-section

- DNN's used in both collaborations to enhance signal sensitivity
- ATLAS simulates the EW signal at NLO pQCD precision with Powheg

P. Govoni - Experimental overview of VBS/VBF measurements at the LHC - LHCP 2024, Boston

arxiv:2205.05711 arxiv:2403.04869

• ATLAS focussing on the $e\mu$ final state only, also ee and $\mu\mu$ considered in CMS

EW W±W± $\rightarrow \ell^{\pm}\nu\ell^{\pm}\nu$ from ATLAS

- cross-sections of the EW-only and EW+QCD components

P. Govoni - Experimental overview of VBS/VBF measurements at the LHC - LHCP 2024, Boston

data driven estimates of main backgrounds due to WZ and non-prompt leptons

study of BSM physics

limits on dimension-8 EFT operators with cut-off regularisation

P. Govoni - Experimental overview of VBS/VBF measurements at the LHC - LHCP 2024, Boston

(CMS <u>arxiv:2104.04762</u>

limits on Georgi - Machacek model parameters

EW W[±]W[±] $\rightarrow \ell^{\pm} \nu \tau^{\pm} \nu$ in CMS see K. Potamianos' talk

- one of the two same-signed W-bosons decays to a hadronic τ lepton
- Significance of SM process at 2.7 s.d., signal strength 1.44 $^{+0.63}_{-0.56}$
- first simultaneous extraction of dim-6 and dim-8 constraints on EFT BSM terms

dim-6 including linear, BSM and mixed contributions, dim-8 including linear and BSM contributions

P. Govoni - Experimental overview of VBS/VBF measurements at the LHC - LHCP 2024, Boston

CMS-PAS-SMP-22-008

17

W[±]W[±] $\rightarrow \ell^{\pm}\nu\ell^{\pm}\nu$ and WZ $\rightarrow 3\ell\nu$ in CMS

- NLO EW and QCD corrections applied to the LO signal samples
- BDT to separate the EW WZ and QCD WZ processes

P. Govoni - Experimental overview of VBS/VBF measurements at the LHC - LHCP 2024, Boston

data-driven backgrounds whenever the MC predictions are not reliable enough

	$\sigma \mathcal{B}(\mathbf{fb})$	Theoretical prediction	Theoretical predic	
	UD(10)	without NLO corrections (fb)	with NLO correction	
	3.98 ± 0.45	3.03 ± 0.57	3.31 ± 0.47	
V^{\pm} 0	$0.37(\mathrm{stat})\pm0.25(\mathrm{syst})$	5.95 ± 0.57		
	4.42 ± 0.47	1.31 ± 0.69	3.72 ± 0.59	
	$0.39(\mathrm{stat})\pm0.25(\mathrm{syst})$	4.34 ± 0.09		
0	1.81 ± 0.41	1.41 ± 0.21	1.24 ± 0.18	
	$0.39(\mathrm{stat})\pm0.14(\mathrm{syst})$	1.41 ± 0.21	1.24 ± 0.10	
Z 0.	4.97 ± 0.46	4.54 ± 0.90	4.36 ± 0.88	
	$0.40(\mathrm{stat})\pm0.23(\mathrm{syst})$	4.54 ± 0.90	4.50 ± 0.00	
С	3.15 ± 0.49	3.12 ± 0.70	3.12 ± 0.70	
	$0.45(\mathrm{stat})\pm0.18(\mathrm{syst})$	3.12 ± 0.70	3.12 ± 0.70	

limits on dimension-8 EFT operators

W[±]W[±] and majorana neutrinos

probe heavy Majorana neutrinos and the Weinberg operator at the LHC

P. Govoni - Experimental overview of VBS/VBF measurements at the LHC - LHCP 2024, Boston

arxiv:2206.08956 arxiv:2403.15016

polarisation studies in CMS

P. Govoni - Experimental overview of VBS/VBF measurements at the LHC - LHCP 2024, Boston

arxiv:2009.09429

 EW production of same-sign WW boson pairs with at least one of the W bosons **longitudinally polarized** is measured with an observed significance of 2.3 s.d.

20

semi-leptonic VBS WV in CMS

- resolved and merged hadronic V decay categories
- W+jets and ttbar suppression with a DNN
- data-driven estimate of residual backgrounds
- significance close to the 5 s.d. level

$$\sigma_{observed} = 1.90^{+0.53}_{-0.46} \text{ pb}$$

$$\sigma_{theory} = 2.23^{+0.08}_{-0.11} \text{ (scale)} \pm 0.05 \text{ (PDF) pb}$$

$$\mu_{EW} = \frac{\sigma_{observed}}{\sigma_{theory}} = 0.85 \pm 0.12 \text{ (stat)} ^{+0.19}_{-0.17} \text{ (system)}$$

P. Govoni - Experimental overview of VBS/VBF measurements at the LHC - LHCP 2024, Boston

the sign of the HVV couplings see A. de Wit's talk

enhancements in VBS WH production

P. Govoni - Experimental overview of VBS/VBF measurements at the LHC - LHCP 2024, Boston

(BSM) discordant sign in HZZ and HWW couplings would lead to cross-section

the SM case of κ_W and κ_Z having the same sign is largely favoured

VBF HH \rightarrow 4b in ATLAS see J. Alison's talk

LHC as a photon collider see A. Gilbert's talk

 $pp(\gamma\gamma) \rightarrow p^{(*)}WW p^{(*)}$

 $\sigma_{\rm meas} = 3.13 \pm 0.31$ (stat.) ± 0.28 (syst.) fb

P. Govoni - Experimental overview of VBS/VBF measurements at the LHC - LHCP 2024, Boston

exclusive J/ $\psi \phi$ production in LHCb

- first observation of the direct production of χ exotic states with no additional visible activity
- non-resonant contribution shape parameters measured in a sideband region

measured cross-sections

$$\sigma_{\chi_{c1}(4140)} \times \mathcal{B}_{\text{eff}}^{\chi_{c1}(4140)} = (0.85 \pm 0.16 \pm 0.3)$$

$$\sigma_{\chi_{c1}(4274)} \times \mathcal{B}_{\text{eff}}^{\chi_{c1}(4274)} = (0.77^{+0.14}_{-0.13} \pm 0.18)$$

$$\sigma_{\chi_{c0}(4500)} \times \mathcal{B}_{\text{eff}}^{\chi_{c0}(4500)} = (0.44^{+0.09}_{-0.08} \pm 0.07)$$

$$\sigma_{\chi_{c1}(4685) + \chi_{c0}(4700)} \times \mathcal{B}_{\text{eff}}^{\chi_{c1}(4685) + \chi_{c0}(4700)} = (0.14^{+0.07}_{-0.06} \pm 0.06)$$

$$\sigma_{NR} \times \mathcal{B}_{\text{eff}}^{NR} = (0.46^{+0.25}_{-0.19} \stackrel{+0.21}{_{-0.22}}) \, \mu$$

P. Govoni - Experimental overview of VBS/VBF measurements at the LHC - LHCP 2024, Boston

summary 1/4

- a wide landscape of VBF + VBS final states studied at the LHC
- for polarisation studies
- did we squeeze all what we could from machine learning tools?

P. Govoni - Experimental overview of VBS/VBF measurements at the LHC - LHCP 2024, Boston

• room for improvement: final states still to be used, e.g. semi-leptonic ones, also

summary 2/4

- on the understanding and use of the **theory predictions**:
- different generators are not always compatible
- need to fully exploit the existing precision calculations in the data analysis
- understand how to match them in EFT and polarised studies
- experimental collaborations not fully consistent yet

P. Govoni - Experimental overview of VBS/VBF measurements at the LHC - LHCP 2024, Boston

an overall systematic comparison between measurements and predictions across collaborations might be useful

summary 3/4

constraining power still the exploited in global EFT fits

P. Govoni - Experimental overview of VBS/VBF measurements at the LHC - LHCP 2024, Boston

dimension 8 SMEFT

summary 4/4

- the holy grail of the VBS longitudinal component measurement is still out of reach

• Run3 measurements still to be delivered!

P. Govoni - Experimental overview of VBS/VBF measurements at the LHC - LHCP 2024, Boston

• **future detectors** expected to allow for a better control of the VBS topology

The COMETA COST Action

- EU-funded initiative
- one ideal place where to pursue these studies across collaborations and communities
- legacy of the VBSCan COST Action
- freshly started this year

Funded by

https://cometa.web.cern.ch/

The COMETA COST Action

- EU-funded initiative
- one ideal place where to pursue these studies across collaborations and comn and when you think that this is boring...
- daugł
- freshly s • everybo

~ William Thomson (Lord Kelvin), 1900

Funded by the European Union

https://cometa.web.cern.ch/

There is nothing new to be discovered in physics now. All that remains is more and more precise measurement.

additional material

single vector boson results

- in proton-proton collisions at 8 TeV https://arxiv.org/abs/1607.06975
- ATLAS Coll., Measurements of electroweak Wij production and constraints on
- dijets in association with a Z boson in proton-proton collisions at ATLAS https:// arxiv.org/abs/2006.15458
- proton collisions at 13 TeV https://arxiv.org/abs/1712.09814
- association with jets in proton-proton collisions at 13 TeV https://arxiv.org/abs/ 2205.02872

P. Govoni - Experimental overview of VBS/VBF measurements at the LHC - LHCP 2024, Boston

• CMS Coll., Measurement of electroweak production of a W boson and two forward jets

anomalous gauge couplings with the ATLAS detector https://arxiv.org/abs/1703.04362

• ATLAS Coll., Differential cross-section measurements for the electroweak production of

• CMS Coll., Electroweak production of two jets in association with a Z boson in proton-

• CMS Coll., Measurement of differential cross sections for the production of a Z boson in

W[±]W[±] $\rightarrow \ell^{\pm}\nu\ell^{\pm}\nu$ in the LHCb detector a parton level feasibility study

signature with one jet and two anti-muons

LHCb detector

P. Govoni - Experimental overview of VBS/VBF measurements at the LHC - LHCP 2024, Boston

Channel $\sigma_{\rm EW}$ [fb] $\sigma_{\rm QCD}$ [fb] $\sigma_{\rm EW}/\sigma_{\rm QCD}$ $0.0185(1) \ 0.0104(1)$ ss WW 1.78 $0.0071(1) \ 0.2952(4)$ WZ0.02 $0.0003(1) \ 0.0161(1)$ ZZ0.02Sum 0.0258(1) 0.3217(4)0.08

34

effective field theory

- add to the SM Lagrangian additional BSM terms
- apparent at (too) high energies

Dim 6

$$\mathcal{L}_{EFT} = \mathcal{L}_{SM} + \sum_{i=WWW,W,B,\Phi W,\Phi B} \frac{c_i}{\Lambda^2} \mathcal{O}_i + j$$

anomalous couplings

P. Govoni - Experimental overview of VBS/VBF measurements at the LHC - LHCP 2024, Boston

generic low-energy parameterisation of an unknown model that would become

Dim 8

Pure Higgs field **Pure Field**strength tensor

Mixed Higgs-fieldstrength

simplistic realisation: choose a basis and associate operators to vertices in form of

electroweak stairway to heaven

Overview of CMS cross section results

				CMS preliminary
	QCD	Jet 7 TeV	PRD 90 (2014) 072006	
single W, Z	Electroweak	Y 7 TeV W 2.76 T W 5.02 T W 5.02 T W 8 TeV W 13 TeV Z 2.76 T Z 5.02 T Z 5.02 T Z 5.02 T Z 7 TeV Z 8 TeV Z 13 TeV Z 8 TeV Z 13 TeV Z 13 TeV Z 13 TeV Z 13.6 T	PRD 84 052011 (2011) PRD 81 052011 (2011) PLB 715 (2012) 66 SMP-20-004 JHEP 10 (2011) 132 PRL 112 (2014) 191802 SMP-20-004 JHEP 03 (2015) 022 FV SMP-20-004 JHEP 10 (2011) 132 PRL 112 (2014) 191802 V SMP-20-004 SMP-22-017	
di-boson	di-Boson	Wγ 7 TeV Wγ 13 TeV Zγ 7 TeV Zγ 8 TeV WW 5.02 T WW 7 TeV WW 8 TeV WW 13 TeV WZ 5.02 T WZ 5.02 T WZ 5.02 T WZ 5.02 T WZ 8 TeV WZ 8 TeV WZ 13 TeV ZZ 5.02 T ZZ 7 TeV ZZ 8 TeV ZZ 8 TeV ZZ 8 TeV ZZ 13 TeV	 PRD 89 (2014) 092005 PRL 126 252002 (2021) PRD 89 (2014) 092005 JHEP 04 (2015) 164 PRL 127 (2021) 191801 EPJC 73 (2013) 2610 EPJC 76 (2016) 401 PRD 102 092001 (2020) PRL 127 (2021) 191801 EPJC 77 (2017) 236 EPJC 77 (2017) 236 JHEP 07 (2022) 032 PRL 127 (2021) 191801 JHEP 01 (2013) 063 PLB 740 (2015) 250 EPJC 81 (2021) 200 	
tri-boson	tri-Boson	VVV 13 TeV WWW 13 TeV WWZ 13 TeV WZZ 13 TeV ZZZ 13 TeV WVγ 8 TeV WVγ 13 TeV WVγ 8 TeV WYγ 13 TeV WYγ 13 TeV Zγγ 8 TeV Zγγ 13 TeV	 PRL 125 151802 (2020) PRD 90 032008 (2014) SMP-22-006 JHEP 10 (2017) 072 JHEP 10 (2017) 072 JHEP 10 (2017) 072 JHEP 10 (2017) 072 JHEP 10 (2021) 174 	
VBF and VBS	VBF and VBS	VBF W 8 TeV VBF W 13 TeV VBF Z 7 TeV VBF Z 8 TeV VBF Z 13 TeV EW WV 13 TeV EW qqWy 8 TeV EW qqWy 8 TeV EW qqWy 8 TeV EW os WW 13 TeV EW ss WW 8 TeV EW ss WW 13 TeV EW qqZy 8 TeV EW qqZy 8 TeV EW qqZy 13 TeV EW qqZZ 13 TeV	 JHEP 11 (2016) 147 EPJC 80 (2020) 43 JHEP 10 (2013) 101 EPJC 75 (2015) 66 EPJC 78 (2018) 589 PLB 834 (2022) 137438 JHEP 08 (2016) 119 JHEP 06 (2017) 106 PRD 108 032017 PLB 841 (2023) 137495 PRL 114 051801 (2015) PLB 809 (2020) 135710 PLB 770 (2017) 380 PRD 104 072001 (2021) PLB 809 (2020) 135710 PLB 809 (2020) 135710 PLB 809 (2020) 135710 PLB 812 (2020) 135992 	$\sigma(ex, \sigma(EW qqW)) = \sigma(EW qqW)$ $\sigma(EW ss WW) = 4 fb$ $\sigma(EW ss WW) = 4 fc$ $\sigma(EW qqZ\gamma) = 1.9 fb$ $\sigma(EW qqZ\gamma) = 1.9 fb$ $\sigma(EW qqZZ) = 0.33 fb$

http://go.web.cern.ch/go/7LSN

P. Govoni - Experimental overview of VBS/VBF measurements at the LHC - LHCP 2024, Boston

 $3 \mu b^{-1} - 138 f b^{-1}$ (2.76,5.02,7,8,13,13.6 TeV)

36
measurements and predictions

VBF, VBS, and Triboson Cross Section Measurements Status: July 2018

$\gamma\gamma\gamma$	$\sigma = 72.6 \pm 6.5 \pm 9.2$ fb (data) MG5_aMCNLO (theory)		
$Z\gamma\gamma \rightarrow \ell\ell\gamma\gamma$	$\sigma = 5.07 + 0.73 - 0.68 + 0.42 - 0.39 \text{ fb (data)} \\ \text{MCFM NLO (theory)}$	AILAS F	
$-[n_{jet}=0]$	$\sigma = 3.48 \pm 0.61 - 0.56 \pm 0.3 - 0.26$ fb (data) MCFM NLO (theory)	Run 1,2 🔨	
$W\gamma\gamma \rightarrow \ell \nu\gamma\gamma$	$\sigma = 6.1 \pm 1.1 - 1 \pm 1.2$ fb (data) MCFM NLO (theory)		
$-[n_{jet}=0]$	$\sigma = 2.9 + 0.8 - 0.7 + 1 - 0.9$ fb (data) MCFM NLO (theory)		
WW $\gamma \rightarrow e \nu \mu \nu \gamma$	$\sigma = 1.5 \pm 0.9 \pm 0.5$ fb (data) VBFNLO+CT14 (NLO) (theory)		
WWW→ℓvℓvjj	$\sigma = 0.24 + 0.39 - 0.33 \pm 0.19 \text{ fb (data)} \\ \text{Madgraph5 + aMCNLO (theory)}$		
WWW→ℓνℓνℓν	$\sigma = 0.31 + 0.35 - 0.33 + 0.32 - 0.35 \text{ fb (data)} \\ \text{Madgraph5 + aMCNLO (theory)}$		
	$\sigma = 7.9 \pm 1.7 \pm 1.6 \pm 1.3 \pm 0.9$ pb (data) LHC-HXSWG (theory)		
	$\sigma = 2.43 + 0.5 - 0.49 + 0.33 - 0.26$ pb (data) LHC-HXSWG YR4 (theory)		
	$\sigma = 500 + 240 - 230 \pm 180$ fb (data) NNLO QCD and NLO EW (LHC-HXSWG) (theory)		
	$\sigma = 0.51 + 0.17 - 0.15 + 0.13 - 0.08$ pb (data) LHC-HXSWG (theory)		
— H($\rightarrow \gamma \gamma$)jj EWK (y <2.5)	$\sigma = 11.2 + 2.6 - 2.4 + 2.3 - 1.6 \text{ fb (data)}$ LHC-HXSWG (theory)	Th	
Wjj EWK (M(jj) > 1 TeV)	$\sigma = 43.5 \pm 6 \pm 9$ fb (data) Powheg+Pythia8 NLO (theory)		
M(ii) > 500 CeV	$\sigma = 159 \pm 10 \pm 26$ fb (data) Powheg+Pythia8 NLO (theory)	LHC pp √	
$= \operatorname{IvI}(\mathfrak{y}) > \operatorname{500}\operatorname{GeV}$	$\sigma = 144 \pm 23 \pm 26$ fb (data) Powheg+Pythia8 NLO (theory)	• Da	
	$\sigma = 34.2 \pm 5.8 \pm 5.5$ fb (data) Powheg+Pythia8 NLO (theory)	sta	
	$\sigma = 10.7 \pm 0.9 \pm 1.9$ fb (data) PowhegBox (NLO) (theory)	LHC pp √	
$\gamma\gamma \rightarrow WW$	$\sigma = 6.9 \pm 2.2 \pm 1.4 \text{ fb (data)} \\ \text{HERWIG++ (theory)}$	Da	
Ζ γ jj EWK	$\sigma = {1.1 \pm 0.5 \pm 0.4 ext{ fb}} (ext{data}) \\ ext{VBFNLO (theory)}$	sta	
	$\sigma = 2.95 \pm 0.49 \pm 0.23$ fb (data) Sherpa 2.2.2 (theory)	LHC pp √	
	$\sigma = 1.5 \pm 0.5 \pm 0.2$ fb (data) PowhegBox (theory)	Da Da	
	$\sigma = 0.57 + 0.14 - 0.13 + 0.07 - 0.05$ fb (data) Sherpa 2.2.2 (theory)	sta	
	$\sigma = 0.29 + 0.14 - 0.12 + 0.09 - 0.1$ fb (data) VBFNLO (theory)		

P. Govoni - Experimental overview of VBS/VBF measurements at the LHC - LHCP 2024, Boston

- electroweak measurements
- joint fit on M_T^{WZ} and m_u^{WW}

P. Govoni - Experimental overview of VBS/VBF measurements at the LHC - LHCP 2024, Boston

dimension-6 EFT global fits

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{f_i^{(6)}}{\Lambda^2} O_i +$$

- two Wilson coefficients free to float simultaneously (the others are set to zero)
- the combination and complementarity of different analysis channels allows for a narrower limit area definition

P. Govoni - Experimental overview of VBS/VBF measurements at the LHC - LHCP 2024, Boston

dimension-6 operators

On	SSW	N+2j OS	WW+2j W	/Z+2j	ZZ	:+2j	ZV	+2j	V	/W
Ομ.	L	L+Q L	L+Q L	L+Q	L	L+Q	L	L+Q	L	L+Q
c _{Hl}^{(1)}	-	т _{ll} -	MET m_{ee}^{\dagger}	m _{wz}	$p_{T,e^-\mu^-}^{\dagger}$	$p_{T,e^-\mu^-}$ †	p_{T,j_1}^V	p_{T,j_1}^V	p _{T,l1}	MET
$c_{Hq}^{(1)}$	p _{T,j1}	р _{т,j1} т _{jj}	m _{ll} m _{jj}	p _{T,j1}	m _{jj}	p_{T,j^1}	m_{jj}^{VBS}	т ^{увs}	MET	MET
$c_{Hq}^{(3)}$	$\Delta \phi_{jj}$	$\Delta \phi_{jj} m_{ll}$	$m_{ll} \Delta \phi_{jj}^{\dagger}$	p _{T,l1}	$\Delta \phi_{jj}{}^\dagger$	p _{T,l4}	p_{T,j_2}^{VBS}	p_{T,j_2}^{VBS}	p _{T,l1}	p _{T,l1}
$c_{qq}^{(3)}$	m_{ll}^{\dagger}	р_{Т,j²} т _{јј}	р _{Т,j²} т _{јј}	p _{T,j²}	m _{jj}	p_{T,j^1}	p_{T,l^1}^{\dagger}	$\Delta \phi_{jj}^{ extsf{VBS}}$	-	-
$c_{qq}^{(3,1)}$	$\Delta \phi_{jj}$	р_{т,j²} т _{јј}	р_{Т,j²} т _{јј}	p _{T,j²}	m _{jj}	p _{T,j1}	$\Delta\eta^{V\dagger}_{jj}$	$\Delta \phi_{jj}^{ extsf{VBS}}$	-	-
$c_{qq}^{(1,1)}$	$\Delta \phi_{jj}$	$p_{T,j^1} p_{T,j^2}$	p _{T,j²} p _{T,j²}	p_{T,j^1}	p _{T,j²}	p_{T,j^2}	$\Delta \phi_{jj}^{ extsf{VBS}}$	p_{T,j_1}^{VBS}	-	-
c ⁽¹⁾ <i>qq</i>	p _{T,j1}	р _{Т,j1} р _{Т,j2}	p _{T,j2} p _{T,j2}	p _{T,j2}	p _{T,j2}	p_{T,j^2}	$\Delta \phi_{jj}^{ extsf{VBS}}$	p_{T,j_1}^{VBS}	-	-
с(3)	$\Delta \eta_{jj}^{\dagger}$	$\Delta \eta_{jj}^{\dagger} m_{jj}^{\dagger}$	$m_{jj}^{\dagger} m_{jj}^{\dagger}$	m _{jj}	m_{jj}^{\dagger}	m_{jj}^{\dagger}	$\Delta \eta_{jj}^{\sf V}$	$\Delta \eta_{jj}^{\sf V}$	m_{ll}^{\dagger}	m_{ll}^{\dagger}
с_{нD}	p _{T,j1}	$m_{ll} \Delta \eta_{jj}$	$\Delta \eta_{jj} m_{ee}$	$\Delta \eta_{jj}^{\dagger}$	$p_{T,e^+\mu^+}$	$p_{T,e^+\mu^+}$ †	p _{T,l²}	p _{T,l²}	p _{T,l1}	p _{T,l1}
c ⁽¹⁾	m_{jj}^{\dagger}	$m_{jj}^{\dagger} m_{jj}^{\dagger}$	$m_{jj}^{\dagger} m_{jj}^{\dagger}$	m _{jj}	m_{jj}^{\dagger}	m_{jj}^{\dagger}	$\Delta\eta^{V\dagger}_{jj}$	$\Delta\eta_{jj}^{V\dagger}$	р _{т,॥} †	p_{T,l^2}
С _{НWB}	p _{T,j1}	$p_{T,j^1} \Delta \eta_{jj}$	m _{ll} m _{ee}	m _{WZ}	$m{m}_{\mu\mu}{}^{\dagger}$	$\Delta \eta_{jj}$	$\Delta \eta_{jj}^{\sf V}$	$\Delta \eta_{jj}^{\sf V}$	p _{T,l1}	MET
C _{H□}	p _{T,j1}	$m_{ll} m_{ll}$	т _{ll} -	m _{WZ}	-	$\Delta \eta_{jj}$	p_{T,j_2}^V	p_{T,j_2}^V	-	-
с _{нw}	$\Delta \phi_{jj}$	$m_{ll} \Delta \phi_{jj}$	$m{m}_{ll}$ $\eta_{l^3}^\dagger$	m _{wz}	m _{jj}	m_{4l}	p_{T,j_1}^{VBS}	p_{T,j_2}^V	-	-
c _W	$\Delta \phi_{jj}$	$p_{T,ll} \Delta \phi_{jj}$	<i>m</i> _{ll} <i>p</i> _{T,l¹}	m _{WZ}	$\Delta \phi_{jj}$	P _{T,l} ₄	$\Delta \phi_{jj}^{ extsf{VBS}\dagger}$	$\Delta \phi_{jj}^{ extsf{VBS}\dagger}$	MET	MET

Observables ranking change from Lin to Lin+Quad. Best observable group usually match prior knowledge about the operator.

P. Govoni - Experimental overview of VBS/VBF measurements at the LHC - LHCP 2024, Boston

courtesy of G. Boldrini

CMS W+W-

event yields

Process	$\mathrm{SR}\mathrm{e}\mu\;Z_{\ell\ell}<1$	$\operatorname{SR} e \mu Z_{\ell\ell} > 1$	SR ee - $\mu\mu$ $Z_{\ell\ell}$ < 1	SR ee - $\mu\mu$ Z _{$\ell\ell$} >
DATA	2441	2192	1606	1667
Signal + background	2396.8 ± 98.5	2239.6 ± 106.0	1590.4 ± 49.4	1660.5 ± 43.6
Signal	169.1 ± 20.2	69.9 ± 8.4	98.0 ± 6.5	38.3 ± 2.5
Background	2227.7 ± 96.4	2169.7 ± 105.6	1492.4 ± 48.9	1622.1 ± 43.5
$t\overline{t} + tW$	1629.4 ± 71.4	1452.5 ± 69.5	767.8 ± 14.5	642.5 ± 13.2
WW (QCD)	327.0 ± 61.6	409.3 ± 77.3	111.1 ± 16.6	121.5 ± 17.3
Nonprompt	107.0 ± 18.4	109.9 ± 16.4	30.0 ± 4.9	32.0 ± 4.2
DY no PU jets			259.5 ± 27.3	408.3 ± 17.1
DY + 1 PU jets			222.7 ± 33.3	337.4 ± 32.9
$\mathrm{D} \mathrm{Y} au^+ au^-$	69.2 ± 4.6	102.0 ± 5.8		
Multiboson	67.7 ± 6.6	75.6 ± 7.3	60.9 ± 3.8	60.1 ± 4.8
Zjj	1.0 ± 0.2	0.4 ± 0.0	40.5 ± 4.2	20.3 ± 1.3
Higgs	26.6 ± 1.5	20.1 ± 1.0		

P. Govoni - Experimental overview of VBS/VBF measurements at the LHC - LHCP 2024, Boston

uncertainties

Uncertainty source QCD-induced W⁺V $t\bar{t}$ scale variation VBS signal scale van tt normalization b tagging Trigger corrections DY normalization Jet energy scale + re Unclustered $p_{\rm T}^{\rm miss}$ QCD-induced W^+V Integrated luminosi Muon efficiency Pileup Electron efficiency Underlying event Parton shower Other

Total systematic un Total statistical unce Total uncertainty

P. Govoni - Experimental overview of VBS/VBF measurements at the LHC - LHCP 2024, Boston

	Value
N^- normalization	5.3%
	5.1%
riation	5.0%
	4.9%
	3.5%
	3.3%
	2.9%
esolution	2.6%
	2.4%
N^{-} scale variation	2.1%
ity	2.0%
	2.0%
	1.8%
	1.5%
	1.3%
	1.0%
	<1%
	10 10/
certainty	13.1%
ertainty	14.9%
	19.8%

impact on the cross-section

ATLAS W+W-

event yields

Process

EWK W^+W^-jj tī Single top Strong W^+W^-jj W+jets Z + jetsMultiboson SM prediction Data

P. Govoni - Experimental overview of VBS/VBF measurements at the LHC - LHCP 2024, Boston

Event	yields
$n_{\rm jets} = 2$	$n_{\rm jets} = 3$
158 ± 27	54 ± 13
2394 ± 194	1625 ± 125
491 ± 34	225 ± 21
1214 ± 256	514 ± 121
37 ± 97	19 ± 48
216 ± 62	65 ± 25
101 ± 5	42 ± 3
4610 ± 77	2546 ± 48
4610	2533

uncertainties

Sources

MC statistical uncertainty Top quark theoretical uncerta Signal theoretical uncertainti Jet experimental uncertaintie Strong W^+W^-jj theoretical Luminosity Misidentified lepton uncertai *b*-tagging Lepton experimental uncerta Others

Data statistical uncertainty Top quark normalisation unc Strong W^+W^-jj normalisati

Total uncertainty

P. Govoni - Experimental overview of VBS/VBF measurements at the LHC - LHCP 2024, Boston

	$\frac{\sqrt{(\Delta\mu)^2 - (\Delta\mu')^2}}{\mu} \ [\%]$
	7.7
ainties	6.3
ies	5.8
es	4.9
uncertainties	1.3
	0.8
inty	0.5
	0.4
ainties	0.1
	0.3
	12.3
certainty	4.9
ion uncertainty	2.2
	18.5

CMS semi-leptonic WV

vector boson identification

the quarks due to the V decay originate two jets

P. Govoni - Experimental overview of VBS/VBF measurements at the LHC - LHCP 2024, Boston

the quarks due to the V decay are close enough to originate **one** single large jet

signal extraction: a deep neural network

- choose variables according to their importance (explainable AI)

Variable	Resolved	Boosted	SHAP Resolved
Lepton pseudorapidity	\checkmark	\checkmark	13
Lepton transverse momentum	\checkmark	\checkmark	16
Zeppenfeld variable for the lepton	\checkmark	\checkmark	2
Number of jets with $p_{\rm T} > 30 {\rm GeV}$	\checkmark	\checkmark	7
Leading VBS tag jet $p_{\rm T}$	-	\checkmark	-
Trailing VBS tag jet $p_{\rm T}$	\checkmark	\checkmark	7
Pseudorapidity interval $\Delta \eta_{ii}^{VBS}$ between tag jets	\checkmark	\checkmark	4
Quark/gluon discriminator of leading VBS tag jet	\checkmark	1	9
Azimuthal angle distance between VBS tag jets	\checkmark	-	10
Invariant mass of the VBS tag jets pair	\checkmark	1	1
$p_{\rm T}$ of the leading V _{had} jet	\checkmark	-	14
$p_{\rm T}$ of the trailing V _{had} jet	\checkmark	-	12
Pseudorapidity difference between V _{had} jets	\checkmark	-	8
Quark/gluon discriminator of the leading V _{had} jet	\checkmark	-	3
Quark/gluon discriminator of the trailing V _{had} jet	\checkmark	-	5
$p_{\rm T}$ of the AK8 V _{had} jet candidate	-	\checkmark	-
Invariant mass of V _{had}	\checkmark	\checkmark	11
Zeppenfeld variable for V _{had}	-	\checkmark	-
Centrality	-	\checkmark	15

many variables that characterise the signal combined into a single discriminant

W+jets estimate

- measure the background crosssection where no signal is expected
- control region: sit away from the hadronic W invariant mass

P. Govoni - Experimental overview of VBS/VBF measurements at the LHC - LHCP 2024, Boston

MVZ

top background estimate

select events with at least one b-quark in the final state

P. Govoni - Experimental overview of VBS/VBF measurements at the LHC - LHCP 2024, Boston

L = 138 fb⁻¹ (13 TeV)

the fit result

P. Govoni - Experimental overview of VBS/VBF measurements at the LHC - LHCP 2024, Boston

the fit result

P. Govoni - Experimental overview of VBS/VBF measurements at the LHC - LHCP 2024, Boston

consistency of the Standard Model

• two-dimensional fit: QCD- and EWinduced VBS (at LO in perturbation theory) cross-sections fitted together

P. Govoni - Experimental overview of VBS/VBF measurements at the LHC - LHCP 2024, Boston

ATLAS Wy

selections and rates

Fiducial cross-section	SR ^{fid}		CR ^{fid}		
	$N_{\rm jets}^{\rm gap} = 0$		$N_{\rm jets}^{\rm gap} > 0$		
Differential cross-section	SR	CRA	CR _B	CR _C	
$m_{jj} > 1 { m TeV}$	$\begin{vmatrix} N_{\text{jets}}^{\text{gap}} = 0\\ \xi_{l\gamma} < 0.35 \end{vmatrix}$	$N_{ m jets}^{ m gap} > 0$ $\xi_{l\gamma} < 0.35$	$N_{\text{jets}}^{\text{gap}} > 0$ $0.35 < \xi_{l\gamma} < 1$	$N_{\text{jets}}^{\text{gap}} = 0$ $0.35 < \xi_{l\gamma} < 1$	

		$\mathrm{SR}^{\mathrm{fid}}\left(N_{\mathrm{jets}}^{\mathrm{gap}}=0\right)$	$\operatorname{CR}^{\operatorname{fid}}\left(N_{\operatorname{jets}}^{\operatorname{gap}}>0\right)$
Expected number of events in the signal and	$EW W \gamma j j$	520 ± 141	120 ± 49
control regions used for the fiducial cross-section	Strong <i>W</i> $\gamma j j$	1550 ± 830	1970 ± 950
production.	Non-prompt	692 ± 57	698 ± 58
Statistical and systematic uncertainties are included	Top quark processes	109 ± 18	183 ± 37
for each component.	EW + strong $Z\gamma jj$	128 ± 34	163 ± 77
included for comparison. The "non-prompt"	Total	3000 ± 830	3140 ± 960
background category includes non-prompt photons and fake leptons.	Data	3341	3143

P. Govoni - Experimental overview of VBS/VBF measurements at the LHC - LHCP 2024, Boston

	/
E	

DNN input variable example

Distribution of the predicted and observed yields for

one of the three highest ranked variables in the NN after performing the profile likelihood fit, **ξly**.

The observed data is represented by solid circles and the associated vertical error bar represents the statistical uncertainty of the data.

The predicted yields comprise simulated EW Wy jj signal, backgrounds from non-prompt photons and leptons that are estimated by using data-driven methods, and backgrounds that are estimated with simulation.

The hashed band represents the quadrature sum of the statistical and systematic uncertainties.

$$\xi_{l\gamma} = \begin{bmatrix} y_{l\gamma} - \frac{y_{j_1} + y_{j_2}}{2} \\ y_{j_1} - y_{j_2} \end{bmatrix}$$

P. Govoni - Experimental overview of VBS/VBF measurements at the LHC - LHCP 2024, Boston

impact of uncertainties

Uncertainty Source Statistics Jets Lepton, photon, pile-up EW $W\gamma jj$ modelling Strong $W\gamma jj$ modelling Non-prompt background Luminosity Other Background modell E_{T}^{miss}

P. Govoni - Experimental overview of VBS/VBF measurements at the LHC - LHCP 2024, Boston

	Fractional Uncertainty [%]
	11
	8
	8
	7
	6
	2
	2
ling	2
	1

CMS Wy

EW production of Wy with two jets

- analysis based on a 2D fit to maximise its sensitivity
- control region to constrain the QCD
 Wγjj production
- background due to jets misidentified as photons or electrons estimated from data with loose-to-tight ratios
- irreducible backgrounds estimated with the simulation

arxiv:2212.12592

P. Govoni - Experimental overview of VBS/VBF measurements at the LHC - LHCP 2024, Boston

measured unfolded cross-sections

$\sigma_{\rm EW}^{\rm fid} = 23.5 \pm 2.8 \,({\rm stat})^{+1.9}_{-1.7} \,({\rm theo})^{+3.5}_{-3.4} \,({\rm syst}) \,{\rm fb} = 23.5^{+4.9}_{-4.7} \,{\rm fb}$ $\sigma_{\rm EW+OCD}^{\rm fid} = 113 \pm 2.0 \,({\rm stat})^{+2.5}_{-2.3} \,({\rm theo})^{+13}_{-13} \,({\rm syst}) \,{\rm fb} = 113 \pm 13 \,{\rm fb}$

P. Govoni - Experimental overview of VBS/VBF measurements at the LHC - LHCP 2024, Boston

observed significance of 6.0 s.d.

limits on new physics

P. Govoni - Experimental overview of VBS/VBF measurements at the LHC - LHCP 2024, Boston

 $\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{f_{i}^{(6)}}{\Lambda^{2}} O_{i} + \sum_{i} \frac{f_{j}^{(8)}}{\Lambda^{4}} O_{j} + \dots$

ATLAS Zy

event yields and systematics

Sample	${\rm SR},m_{jj}>150~{\rm GeV}$	${\rm SR},m_{jj}>500~{\rm GeV}$	${\rm CR},m_{jj}>500~{\rm GeV}$
$N_{\rm EW-Z\gamma ii}$		269 ± 27	25 ± 6
$N_{\rm QCD-Z\gamma jj}$		245 ± 21	224 ± 18
$N_{\rm Z\gamma jj}$	1292 ± 50		
N_{Z+jets}	78 ± 30	21 ± 8	16 ± 5
$N_{t\bar{t}\gamma}$	73 ± 11	16 ± 2	8 ± 1
N_{WZ}	17 ± 3	9 ± 2	4 ± 1
Total	1461 ± 38	560 ± 23	277 ± 17
$N_{\rm obs}$	1461	562	274

	Data stat.	MC stat.	Background	Reco	EW mod.	QCD mod.	Tota
$\Delta \sigma_{EW} / \sigma_{EW}$ [%]	± 9	± 1	± 1	± 4	$^{+8}_{-6}$	± 2	± 13
$\Delta \sigma_{Z\gamma} / \sigma_{Z\gamma} \ [\%]$	± 3	± 1	± 2	$^{+4}_{-3}$	$^{+7}_{-6}$	± 9	$^{+12}_{-11}$

P. Govoni - Experimental overview of VBS/VBF measurements at the LHC - LHCP 2024, Boston

CMS Zy

systematic uncertainties

Systematic uncerta Jet energy correction Theoretical uncerta MC statistical unce PU Related to e, γ PU jet ID ECAL timing shift Nonprompt- γ bkg Related to μ Integrated luminos Total systematic ur

P. Govoni - Experimental overview of VBS/VBF measurements at the LHC - LHCP 2024, Boston

ainty	Impa	ct [%]
on	+7.9	-6.7
ainties	+5.5	-4.7
ertainties	+4.7	-4.5
	+4.7	-4.1
	+4.5	-3.6
	+3.7	-3.4
at L1	+3.5	-2.8
. estimate	+2.0	-1.6
	+1.7	-1.4
sity	+0.8	-0.6
ncertainty	+14	-12

event yields

Process	$\mu\mu\gamma_{\rm barrel}$	$\mu\mu\gamma_{endcap}$	$ee\gamma_{barrel}$	$ee\gamma_{endcap}$
ST	0.7 ± 0.4	0.2 ± 0.2	0.6 ± 0.3	0.2 ± 0.2
$\mathrm{TT}\gamma$	8.8 ± 1.3	2.1 ± 0.5	3.4 ± 0.6	0.2 ± 0.2
\overline{VV}	6.0 ± 1.9	3.2 ± 1.2	4.1 ± 1.3	0.8 ± 0.3
Nonprompt photon	189 ± 9.2	143 ± 6.9	93.6 ± 6.5	74.3 ± 5.0
$QCDZ\gamma$	274 ± 10	108 ± 5.6	162 ± 7.4	62.4 ± 3.9
$\mathrm{EW}\mathrm{Z}\gamma$	133 ± 4.7	46.5 ± 1.7	84.5 ± 3.1	28.2 ± 1.1
Predicted yields	612 ± 13	303 ± 8	349 ± 9	166 ± 6
Data	584	320	375	174

P. Govoni - Experimental overview of VBS/VBF measurements at the LHC - LHCP 2024, Boston

CMS same-sign WW with a tau lepton

EFT limits

	Wilcon	officiant	68% CL interval	(s)	95% CL	interval
	VVIISOIT CO	emcient	Expected	Observed	Expected	Observed
obtained with		$c_{ll}^{(1)}$	$[-12.9, -8.03] \cup [-2.95, 1.91]$	[-11.6, 0.045]	[-14.6, 3.53]	[-13.5, 2.11]
		$c_{qq}^{(1)}$	[-0.501, 0.576]	[-0.341, 0.416]	[-0.742, 0.818]	[-0.605, 0.681]
a fit on a		c_W	[-0.681, 0.669]	[-0.513, 0.481]	[-0.987, 0.974]	[-0.842, 0.818]
DNINI trainad		c_{HW}	[-7.00, 6.09]	[-5.48, 4.31]	[-9.99, 9.05]	[-8.68, 7.60]
DIVINITATIEU	1	c_{HWB}	[-41.7, 69.6]	[30.7, 89.2]	[-66.6, 96.4]	[-49.7, 110]
fo the dim-6	dim-6	$C_{H\square}$	[-16.6, 18.1]	[-12.0, 14.0]	[-24.7, 26.3]	[-20.9, 22.7]
		c_{HD}	[-24.6, 34.7]	[-15.3, 31.5]	[-38.2, 48.8]	[-31.4, 45.5]
case		$c_{Hl}^{(1)}$	[-28.8, 29.9]	[-38.2, 39.5]	[-49.4, 49.7]	[-69.3,68.3]
		$c_{Hl}^{(3)}$	$[-1.43, 2.23] \cup [5.88, 9.54]$	[-0.045, 8.58]	[-2.64, 10.8]	[-1.59, 9.94]
		$c_{Hq}^{(1)}$	[-4.53, 4.42]	[-3.27, 3.44]	[-6.56, 6.44]	[-5.55, 5.60]
		$c_{Hq}^{(3)}$	[-2.39, 1.37]	[-1.88, 0.705]	[-3.24, 2.16]	[-2.82, 1.61]
		f_{T0}	[-1.02, 1.08]	[-0.774, 0.842]	[-1.52, 1.58]	[-1.32, 1.38]
obtained with		f_{T1}	[-0.426, 0.480]	[-0.319, 0.381]	[-0.640, 0.695]	[-0.552, 0.613]
a fit on a		f_{T2}	[-1.15, 1.37]	[-0.851, 1.12]	[-1.75, 1.98]	[-1.51, 1.76]
amona		f_{M0}	[-9.89, 9.74]	[-8.07, 7.70]	[-14.6, 14.5]	[-13.1, 12.8]
DNN trained	dim-8	f_{M1}	[-12.5, 13.3]	[-9.54, 11.15]	[-18.7, 19.6]	[-16.4, 17.7]
f = t z = z t z = 0	unit 0	f_{M7}	[-20.3, 19.2]	[-17.6, 15.3]	[-29.9, 28.8]	[-27.6, 25.8]
to the alm-8		f_{S0}	[-11.6, 12.0]	[-9.60, 9.82]	[-17.4, 17.9]	[-15.9, 16.1]
0200		f_{S1}	[-37.4, 38.8]	[-40.9, 41.3]	[-57.2, 58.6]	[-60.9, 61.8]
Last		f_{S2}	[-37.4, 38.8]	[-40.9, 41.3]	[-57.2, 58.6]	[-60.9,61.8]

P. Govoni - Experimental overview of VBS/VBF measurements at the LHC - LHCP 2024, Boston

CMS same-sign WW and WZ

uncertainties

Source of uncertainty Integrated luminosity Lepton measurement Jet energy scale and resol Pileup btagging Nonprompt rate Trigger Limited sample size Theory Total systematic uncertain Statistical uncertainty Total uncertainty

P. Govoni - Experimental overview of VBS/VBF measurements at the LHC - LHCP 2024, Boston

	$W^{\pm}W^{\pm}$ (%)	WZ (%)
	1.5	1.6
	1.8	2.9
lution	1.5	4.3
	0.1	0.4
	1.0	1.0
	3.5	1.4
	1.1	1.1
	2.6	3.7
	1.9	3.8
nty	5.7	7.9
-	8.9	22
	11	23

event yields

Process	$W^{\pm}W^{\pm}$ S	SR	WZ SR	
	Asimov data set	Data	Asimov data set	Data
${ m EW}{ m W}^{\pm}{ m W}^{\pm}$	209 ± 26	210 ± 26		
$ m QCD~W^{\pm}W^{\pm}$	13.8 ± 1.6	13.7 ± 2.2		
Interference $W^{\pm}W^{\pm}$	8.4 ± 2.3	8.7 ± 2.3		
EW WZ	14.1 ± 4.0	17.8 ± 3.9	54 ± 15	69 ± 15
QCD WZ	43 ± 6.7	42.7 ± 7.4	118 ± 17	117 ± 17
Interference WZ	0.3 ± 0.1	0.3 ± 0.2	2.2 ± 0.9	2.7 ± 1.0
ZZ	0.7 ± 0.2	0.7 ± 0.2	6.1 ± 1.7	6.0 ± 1.8
Nonprompt	211 ± 43	193 ± 40	14.6 ± 7.4	14.4 ± 6.7
tVx	7.8 ± 1.9	7.4 ± 2.2	15.1 ± 2.7	14.3 ± 2.8
$ m W\gamma$	9.0 ± 1.8	9.1 ± 2.9	1.1 ± 0.3	1.1 ± 0.4
Wrong-sign	13.5 ± 6.5	13.9 ± 6.5	1.6 ± 0.5	1.7 ± 0.7
Other background	5.0 ± 1.3	5.2 ± 2.1	3.3 ± 0.6	3.3 ± 0.7
Total SM	535 ± 52	522 ± 49	216 ± 21	229 ± 23
Data	524		229	

P. Govoni - Experimental overview of VBS/VBF measurements at the LHC - LHCP 2024, Boston

			(
-	-			
			,	

EFT interpretation

с Т
ŝ
വ
0

	Obcorried $(M^{\pm}M^{\pm})$	Exported $(M^{\pm}M^{\pm})$	Obcorriged (WZ)	Exported (WZ)	Obcomund	Exported
	Observed (vv vv)	Expected (W W)	Observed (WZ)	Expected (WZ)	Observed	Expected
	(TeV^{-4})	(TeV^{-4})	(TeV^{-4})	(TeV^{-4})	(TeV^{-4})	(TeV^{-4})
$f_{\rm T0}/\Lambda^4$	[-0.28, 0.31]	[-0.36, 0.39]	[-0.62, 0.65]	[-0.82, 0.85]	[-0.25, 0.28]	[-0.35, 0.37]
$f_{\mathrm{T1}}/\Lambda^4$	[-0.12, 0.15]	[-0.16, 0.19]	[-0.37, 0.41]	[-0.49, 0.55]	[-0.12, 0.14]	[-0.16, 0.19]
$f_{\mathrm{T2}}/\Lambda^4$	[-0.38, 0.50]	[-0.50, 0.63]	[-1.0, 1.3]	[-1.4, 1.7]	[-0.35, 0.48]	[-0.49, 0.63]
$f_{ m M0}/\Lambda^4$	[-3.0, 3.2]	[-3.7, 3.8]	[-5.8, 5.8]	[-7.6, 7.6]	[-2.7, 2.9]	[-3.6, 3.7]
$f_{\rm M1}/\Lambda^4$	[-4.7, 4.7]	[-5.4, 5.8]	[-8.2, 8.3]	[-11, 11]	[-4.1, 4.2]	[-5.2, 5.5]
$f_{ m M6}/\Lambda^4$	[-6.0, 6.5]	[-7.5, 7.6]	[-12, 12]	[-15, 15]	[-5.4, 5.8]	[-7.2, 7.3]
$f_{ m M7}/\Lambda^4$	[-6.7, 7.0]	[-8.3, 8.1]	[-10, 10]	[-14, 14]	[-5.7, 6.0]	[-7.8, 7.6]
$f_{\mathrm{S0}}/\Lambda^4$	[-6.0, 6.4]	[-6.0, 6.2]	[-19, 19]	[-24, 24]	[-5.7, 6.1]	[-5.9, 6.2]
$f_{\rm S1}/\Lambda^4$	[-18, 19]	[-18, 19]	[-30, 30]	[-38, 39]	[-16, 17]	[-18, 18]

		Observed ($W^{\pm}W^{\pm}$)	Expected ($W^{\pm}W^{\pm}$)	Observed (WZ)	Expected (WZ)	Observed	Expected
0		(TeV^{-4})	(TeV^{-4})	(TeV^{-4})	(TeV^{-4})	(TeV^{-4})	(TeV^{-4})
at	$f_{\rm T0}/\Lambda^4$	[-1.5, 2.3]	[-2.1, 2.7]	[-1.6, 1.9]	[-2.0, 2.2]	[-1.1, 1.6]	[-1.6, 2.0]
S	$f_{ m T1}/\Lambda^4$	[-0.81, 1.2]	[-0.98, 1.4]	[-1.3, 1.5]	[-1.6, 1.8]	[-0.69, 0.97]	[-0.94, 1.3]
	$f_{\mathrm{T2}}/\Lambda^4$	[-2.1, 4.4]	[-2.7, 5.3]	[-2.7, 3.4]	[-4.4, 5.5]	[-1.6, 3.1]	[-2.3, 3.8]
	$f_{ m M0}/\Lambda^4$	[-13, 16]	[-19, 18]	[-16, 16]	[-19, 19]	[-11, 12]	[-15, 15]
	$f_{ m M1}/\Lambda^4$	[-20, 19]	[-22, 25]	[-19, 20]	[-23, 24]	[-15, 14]	[-18, 20]
	$f_{ m M6}/\Lambda^4$	[-27, 32]	[-37, 37]	[-34, 33]	[-39, 39]	[-22, 25]	[-31, 30]
	$f_{ m M7}/\Lambda^4$	[-22, 24]	[-27, 25]	[-22, 22]	[-28, 28]	[-16, 18]	[-22, 21]
it	$f_{\mathrm{S0}}/\Lambda^4$	[-35, 36]	[-31, 31]	[-83, 85]	[-88, 91]	[-34, 35]	[-31, 31]
3	$f_{ m S1}/\Lambda^4$	[-100, 120]	[-100, 110]	[-110, 110]	[-120, 130]	[-86, 99]	[-91,97]

ATLAS same-sign WW

cross-section results

 $\sigma_{\text{fid}}^{\text{EVV}} = 2.92 \pm 0.22 \text{ (stat)} \pm 0.13 \text{ (mod sys)} \pm 0.12 \text{ (exp sys)} \pm 0.06 \text{ (lum) fb}$

$\sigma_{\text{fid}}^{\text{EW}+\text{QCD}} = 3.38 \pm 0.22 \text{ (stat)} \pm 0.11 \text{ (mod sys)} \pm 0.14 \text{ (exp sys)} \pm 0.06 \text{ (lum) fb}$

Description	$\sigma_{\rm fid}^{\rm EW}$ [fb]	$\sigma_{\rm fid}^{\rm EW+Int+QCD}$ [fb]	QCD	E
Measured cross section	2.92 ± 0.22 (stat.) ± 0.19 (syst.)	3.38 ± 0.22 (stat.) ± 0.19 (syst.)	_	
MG5_AMC+Herwig7	$2.53 \pm 0.04 (PDF) ^{+0.22}_{-0.19} (scale)$	$2.92 \pm 0.05 (PDF) ^{+0.34}_{-0.27} (scale)$	LO	L
MG5_AMC+Pythia8	$2.53 \pm 0.04 (PDF) ^{+0.22}_{-0.19} (scale)$	$2.90 \pm 0.05 (PDF) + 0.33 - 0.26 (scale)$	LO	L
Sherpa	$2.48 \pm 0.04 (PDF) ^{+0.40}_{-0.27} (scale)$	$2.92 \pm 0.03 (PDF) ^{+0.60}_{-0.40} (scale)$	LO	L
Sherpa \otimes NLO EW	$2.10 \pm 0.03 (PDF) ^{+0.34}_{-0.23}$ (scale)	$2.54 \pm 0.03 (PDF) ^{+0.50}_{-0.33} (scale)$	NLO	L
Powheg Box+Pythia	2.64		NLO	L

tag jet pair invariant mass

P. Govoni - Experimental overview of VBS/VBF measurements at the LHC - LHCP 2024, Boston

EFT constraints

Coefficient	Туре	No unitarisation cut-off [TeV ⁻⁴]
<i>c</i> / A 4	Exp.	[-3.9, 3.8]
$J_{\rm M0}/\Lambda$	Obs.	[-4.1, 4.1]
c / A 4	Exp.	[-6.3, 6.6]
$J_{\rm M1}/\Lambda^{-1}$	Obs.	[-6.8, 7.0]
$f_{\rm M7}/\Lambda^4$	Exp.	[-9.3, 8.8]
	Obs.	[-9.8, 9.5]
$f_{\rm S02}/\Lambda^4$	Exp.	[-5.5, 5.7]
	Obs.	[-5.9, 5.9]
£ 114	Exp.	[-22.0, 22.5]
J_{S1}/Λ^{-1}	Obs.	[-23.5, 23.6]
c / A 4	Exp.	[-0.34, 0.34]
$J_{\rm T0}/\Lambda^2$	Obs.	[-0.36, 0.36]
c / A 4	Exp.	[-0.158, 0.174]
$f_{\rm T1}/\Lambda^{-1}$	Obs.	[-0.174, 0.186]
<u> </u>	Exp.	[-0.56, 0.70]
J_{T2}/Λ	Obs.	[-0.63, 0.74]

P. Govoni - Experimental overview of VBS/VBF measurements at the LHC - LHCP 2024, Boston

f Lower, upper limit at the respective unitarity bound $[\text{TeV}^{-4}]$

> -64 at 0.9 TeV, 40 at 1.0 TeV -140 at 0.7 TeV, 117 at 0.8 TeV -25.5 at 1.6 TeV, 31 at 1.5 TeV -45 at 1.4 TeV, 54 at 1.3 TeV -33 at 1.8 TeV, 29.1 at 1.8 TeV -39 at 1.7 TeV, 42 at 1.7 TeV -94 at 0.8 TeV, 122 at 0.7 TeV

-3.2 at 1.2 TeV, 4.9 at 1.1 TeV -7.4 at 1.0 TeV, 12.4 at 0.9 TeV -0.32 at 2.6 TeV, 0.44 at 2.4 TeV -0.38 at 2.5 TeV, 0.49 at 2.4 TeV -2.60 at 1.7 TeV, 10.3 at 1.2 TeV

phase space region definitions

Requirement	SR	Low- <i>m</i> _{jj} CR	WZ CR	
Leading and subleading lepton p_T Electron $ \eta $ Muon $ \eta $	< 2.47 (> 27 GeV (1.37 in <i>ee</i>), excluding 1.3 < 2.5	$37 \le \eta \le 1.52$	
Leading (subleading) jet $p_{\rm T}$ Additional jet $p_{\rm T}$ Jet $ \eta $		> 65 (35) GeV > 25 GeV < 4.5		$\xi_{WZ} > 0.4$
$m_{\ell\ell}$ $E_{\rm T}^{\rm miss}$ Charge misid. $Z \rightarrow ee$ veto b -jet veto $N_{\rm veto \ leptons}$ $m_{\ell\ell\ell}$	$ m_{ee} _{N_{b-j}} = 0$	> 20 GeV > 30 GeV $-m_Z > 15$ GeV $e_t = 0, p_T^{b-jet} > 20$ GeV, $ m_z = 0$ -	$ \gamma^{b-jet} < 2.5$ = 1, $p_T > 15$ GeV > 106 GeV	$\xi_{WZ} = \left \frac{y_{WZ} - (y_{j1} + y_{j2})/2}{y_{j1} - y_{j2}} \right $
m_{jj} $ \Delta y_{jj} $	> 500 GeV	200 < m _{jj} < 500 GeV > 2	> 200 GeV	
		control background uncertainties	s correct shape	Mjj Ə

P. Govoni - Experimental overview of VBS/VBF measurements at the LHC - LHCP 2024, Boston

	/
F	

event rates

Process	ee	eμ		μ	е	μ	μ	Com	oined
$W^{\pm}W^{\pm}jj \text{ EW}$	27.6 ± 0.9	68.2	±1.6	61.3	± 1.5	77.8	±1.7	235	± 5
$W^{\pm}W^{\pm}jj$ QCD	1.6 ± 0.5	7.3	± 2.2	6.4	± 1.9	8.8	± 2.5	24	±7
$W^{\pm}W^{\pm}jj$ Int	0.93 ± 0.20	2.2	± 0.5	2.0	± 0.4	2.5	± 0.5	7.6	±1.6
$W^{\pm}Zjj$ QCD	8.4 ± 1.0	26.8	± 3.0	26.7	± 3.0	20.9	± 2.2	83	±9
$W^{\pm}Zjj$ EW	1.71 ± 0.14	4.9	± 0.4	4.1	± 0.4	4.2	± 0.4	14.9	± 1.2
Non-prompt	8.9 ± 2.6	15	± 4	10.2	± 3.2	21	±7	56	± 12
$V\gamma$	1.3 ± 0.8	5.1	± 2.2	4.6	± 2.6		_	11	± 5
Charge misid.	3.8 ± 2.0	5.0	± 1.3	1.2	± 0.4		_	10	± 4
Other prompt	1.02 ± 0.29	2.5	± 0.6	1.8	± 0.5	1.7	± 2.2	7.1	± 2.8
Total expected	55 ± 4	137	± 7	118	±6	137	± 8	448	± 20
Data	52	149)	12	27	14	17	47	75

systematic uncertainties

Source	Impact [%]
Experimental	4.6
Electron calibration	0.4
Muon calibration	0.5
Jet energy scale and resolution	1.9
$E_{\rm T}^{\rm miss}$ scale and resolution	0.2
<i>b</i> -tagging inefficiency	0.7
Background, misid. leptons	3.4
Background, charge misrec.	1.0
Pile-up modelling	0.1
Luminosity	1.9
Modelling	4.5
EW $W^{\pm}W^{\pm}jj$, shower, scale, PDF & α_s	0.7
EW $W^{\pm}W^{\pm}jj$, QCD corrections	1.9
EW $W^{\pm}W^{\pm}jj$, EW corrections	0.9
Int $W^{\pm}W^{\pm}ii$, shower, scale, PDF & α_s	0.6
QCD $W^{\pm}W^{\pm}jj$, shower, scale, PDF & α_s	2.6
QCD $W^{\pm}W^{\pm}jj$, QCD corrections	0.8
Background, WZ scale, PDF & α_s	0.3
Background, WZ reweighting	1.5
Background, other	1.3
Model statistical	1.8
Experimental and modelling	6.4
Data statistical	7.4
Total	9.8

P. Govoni - Experimental overview of VBS/VBF measurements at the LHC - LHCP 2024, Boston

ATLAS WZ

cross-sections in mjj bins

EW WZ $\rightarrow 3\ell\nu$ production

- MVA techniques used in SR 0.368 ± 0.037 (stat.) ± 0.059 (syst.) ± 0.003 (lumi.) fb $\sigma_{WZjj-EW}$ 0.37 ± 0.07 fb, and CR's with non trivial 1.093 ± 0.066 (stat.) ± 0.131 (syst.) ± 0.009 (lumi.) fb $\sigma_{WZjj-\text{strong}}$ uncertainty treatment
- main uncertainties from theory modelling and jet reconstruction

P. Govoni - Experimental overview of VBS/VBF measurements at the LHC - LHCP 2024, Boston

 1.09 ± 0.14 fb,

differential distributions and interpretation

- statistically dominated
- unfolded BDT distribution, obtained training the same BDT at particle level
- dimension-8 EFT limits (w/ and w/o unitarisation) comparable with CMS ones

arxiv:2403.15296

dimension-8 EFT operator limits

- dominated by pure dimension-8 terms in the cross-section calculation
- Cross

	Expected $[\text{TeV}^{-4}]$	Observed $[\text{TeV}^{-4}]$
$f_{\rm T0}/\Lambda^4$	[-0.80, 0.80]	[-0.57, 0.56]
$f_{ m T1}/\Lambda^4$	[-0.52, 0.49]	[-0.39, 0.35]
$f_{\mathrm{T2}}/\Lambda^4$	[-1.6, 1.4]	[-1.2, 1.0]
$f_{ m M0}/\Lambda^4$	[-8.3, 8.3]	[-5.8, 5.6]
$f_{ m M1}/\Lambda^4$	[-12.3, 12.2]	[-8.6, 8.5]
$f_{ m M7}/\Lambda^4$	[-16.2, 16.2]	[-11.3, 11.3]
$f_{ m S02}/\Lambda^4$	[-14.2, 14.2]	[-10.4, 10.4]
$f_{\mathrm{S1}}/\Lambda^4$	[-42, 41]	[-30, 30]

no unitarisation

P. Govoni - Experimental overview of VBS/VBF measurements at the LHC - LHCP 2024, Boston

unitarisation cut-off set where the unitary bound and the experimental bound

	Expected	Observed
	$[\text{TeV}^{-4}]$	$[\text{TeV}^{-4}]$
$f_{ m T0}/\Lambda^4$	[-7.0, 7.0]	[-1.5, 1.6]
$f_{ m T1}/\Lambda^4$	[-1.1, 1.0]	[-0.7, 0.6]
$f_{\mathrm{T2}}/\Lambda^4$	[-12, 6]	[-2.4, 1.8]
$f_{ m M0}/\Lambda^4$	[-60, 60]	[-12, 12]
$f_{ m M1}/\Lambda^4$	[-32, 32]	[-15, 15]
$f_{ m M7}/\Lambda^4$	[-30, 30]	[-15, 15]
$f_{\mathrm{S02}}/\Lambda^4$	[-41, 41]	[-18, 18]
$f_{ m S1}/\Lambda^4$		

with unitarisation

expected and observed event number

	SR, $N_{\rm jets} = 2$	SR, $N_{\rm jets} \ge 3$	$b ext{-}\mathrm{CR}$	ZZ-CR
Data	169	477	666	210
Total pred.	170 ± 13	$476 \pm \ 22$	667 ± 26	$212 \qquad \pm 14$
WZjj-EW	68 ± 14	55 ± 18	4.84 ± 0.27	0.724 ± 0.014
WZjj-QCD	58 ± 16	307 ± 27	77 ± 18	6.3 ± 0.7
WZjj-INT	0.9 ± 0.4	4.4 ± 2.3	0.57 ± 0.29	0.22 ± 0.11
$t\bar{t} + V$	0.59 ± 0.10	18.3 ± 2.4	262 ± 34	9.0 ± 1.3
tZj	11.0 ± 1.9	25 ± 5	169 ± 30	0.54 ± 0.09
ZZ-QCD	10.3 ± 1.0	34.6 ± 3.2	10.1 ± 0.5	171 ± 15
ZZ-EW	1.9 ± 0.4	3.7 ± 0.9	0.21 ± 0.05	19 ± 5
VVV	0.41 ± 0.10	2.0 ± 0.5	0.39 ± 0.10	4.2 ± 1.0
Misid. leptons	18 ± 4	27 ± 6	$143 \qquad \pm \ 35$	1.7 ± 0.5

post-fit numbers all sources of uncertainties included

systematic uncertainties

Source	$\frac{\Delta \sigma_{WZjj-\rm EW}}{\sigma_{WZjj-\rm EW}} \ [\%]$	$\frac{\Delta \sigma_{WZjj-\text{strong}}}{\sigma_{WZjj-\text{strong}}} \left[\%\right]$
WZjj – EW theory modelling	7	1.8
WZjj–QCD theory modelling	2.8	8
WZjj – EW and $WZjj$ – QCD interference	0.35	0.6
PDFs	1.0	0.06
Jets	2.3	5
Pile-up	1.1	0.6
Electrons	0.8	0.8
Muons	0.9	0.9
b-tagging	0.10	0.11
MC statistics	1.9	1.2
Misid. lepton background	2.3	2.3
Other backgrounds	0.9	0.23
Luminosity	0.7	0.9
All systematics	16	12
Statistics	10	6
Total	19	13

P. Govoni - Experimental overview of VBS/VBF measurements at the LHC - LHCP 2024, Boston

ATLAS VBF WH

event yields

	Negative λ_{WZ}	Positive	e λ_{WZ}
k _{tī}	$0.88 + 0.30 \\ -0.35$	0.96	+0.21 -0.23
k_W	$1.12 \begin{array}{c} +0.34 \\ -0.25 \end{array}$	1.25	+0.33 -0.24
k_{Wt}	$0.32 \begin{array}{c} +0.39 \\ -0.13 \end{array}$	0.31	+0.37 -0.14
$\mu = \sigma / \sigma_{\text{pred.}}$	$-0.027 \begin{array}{c} +0.054 \\ -0.057 \end{array}$	0.9	+4.0 -4.3
	SR ⁻	SR ⁺ _{loose}	SR ⁺ _{tight}
tī	42 ± 19	172 ± 35	15.0 ± 5.8
W+jets	26 ± 13	84 ± 32	14.1 ± 7.6
Wt	4.6 ± 7.0	8 ± 13	0.8 ± 1.5
Other background	5.4 ± 1.6	16.2 ± 4.2	3.0 ± 1.5
Total background	77.7 ± 8.6	279 ± 15	32.9 ± 5.8
VBF WH, pre-fit	285 ± 45	4.15 ± 0.56	2.30 ± 0.62
VBF WH, post-fit	-8 ± 17	4 ± 17	2.2 ± 9.8
Data	70	274	37

P. Govoni - Experimental overview of VBS/VBF measurements at the LHC - LHCP 2024, Boston

CMS VBF WH

The CMS result

Type	Yield	Stat. Unc.	Syst. Ur
Signal	366	3	68
Background	108	14	14
Observed	130		

The background yield estimated from data and signal yield (κ W=-1, κ Z=1) predicted by MC simulation in the **BSM signal region**

ATLAS exclusive WW

systematics

Source of uncertainty

Experimental

Track reconstruction Electron energy scale and resolution, and Muon momentum scale and resolution, Misidentified leptons, systematic Misidentified leptons, statistical Other background, statistical

Modelling

Pile-up modelling Underlying-event modelling Signal modelling WW modelling Other background modelling

Luminosity

Total

P. Govoni - Experimental overview of VBS/VBF measurements at the LHC - LHCP 2024, Boston

	Impact [% of the fitted cross section]
	1.1
d efficiency	0.4
and efficiency	0.5
	1.5
	5.9
	3.2
	1.1
	1.4
	2.1
	4.0
	1.7
	1.7
	8.9

CMS exclusive $\gamma\gamma$

systematic uncertainties

Source

Integrated luminosity Background estimation Photon ID scale factors Proton survival probability Particle shower reconstruction

	2016	2017	201
	1.2%	2.3%	2.5°
	23.3%	25.2%	20.9
	3.1%	7.0%	2.9°
	10%	10%	10%
on in PPS			1.7°

ATLAS ZZ

event yields

Process	lllljj	llvvjj
EW ZZjj	31.4 ± 3.5	15.0 ± 0.8
QCD ZZjj	77 ± 25	17.2 ± 3.5
QCD ggZZjj	13.1 ± 4.4	3.5 ± 1.1
Non-resonant-ll		21.4 ± 4.8
WZ		24.6 ± 1.1
Others	3.2 ± 2.1	1.2 ± 0.9
Total	124 ± 26	82.9 ± 6.4
Data	127	82

P. Govoni - Experimental overview of VBS/VBF measurements at the LHC - LHCP 2024, Boston

