## EFT ON THE EW SECTOR

Based on 'Production of two, three, and four Higgs bosons: where SMEFT and HEFT depart'
(Rafael L. Delgado, RGA , Javier MartínezMartín, Alexandre Salas-Bernárdez , Juan J. Sanz-Cillero)

## PART I: OPEN QUESTIONS

## Why new physics? We've all seen the list

What is dark matter? What is dark energy?

Where does CP violation come from?

Why is the top quark so much heavier than the $W$ boson?

What is the source of the matterantimatter asymmetry in the universe?

What is the shape of the Higgs potential?
Why is the weak force so much weaker than the strong force?


We have the SM, but...

> | The SM doesn't answer |
| :--- |
| any of these questions |

Here we will focus on the following questions:

1. What is the shape of the Higgs potential
2. Why is the weak force so much weaker than the strong force
3. What is the origin of EWSB?


## PART II: WHAT WE KNOW

The Higgs sector (as seen from the SM)

$$
\mathscr{L}_{H}=\left(D_{\mu} \Phi\right)^{\dagger}\left(D_{\mu} \Phi\right)-V_{k} \quad-\mu^{2} \Phi^{\dagger} \Phi+\lambda\left(\Phi^{\dagger} \Phi\right)^{2}
$$

$\geqslant$ If we assume a doublet shape, $\lambda_{3}$ and $\lambda_{4}$ will be related, and so will eventually any $\lambda_{5}, \lambda_{6}$
$>$ Same goes for $h v$ and $h v v$

If the Higgs is NOT a doublet, we will need to measure the $\lambda_{i}$ independently to parametrise the potential and the $h v^{n}$ to decipher the EWSB mechanism

If we assume EWSB and V are SM-like (implying new physics is weakly coupled), we can write down the SMEFT Lagrangian:

$$
\mathscr{L}_{S M E F T}=\mathscr{L}_{S M}+c_{1} \frac{\mathcal{O}_{1}^{(6)}}{\Lambda^{2}}+c_{2} \frac{\mathcal{O}_{2}^{(6)}}{\Lambda^{2}}+\ldots+c_{3} \frac{\mathcal{O}_{3}^{(8)}}{\Lambda^{4}}+c_{4} \frac{\mathcal{O}_{1}^{(8)}}{\Lambda^{4}}+\ldots
$$

## SMEFT

Dim-6 analyses of the EW sector
https://arxiv.org/abs/2101.03180
In 2020 with 52 data points in VV and 18 in VBS, we found no big deviation from the SM

Natural next steps:
$>$ update the fit with 2023 data
$>$ add dim-8 operators


## PART III: WHAT WE DON’T KNOW

# "THE HIGGS IS A DOUBLET UNDER SU(2)".... <br> LET'S START BY VALIDATING THIS STATEMENT 

## hZZ vs Higgs self-coupling

Measuring the H couplings to multiple vector bosons can also be a smoking gun for new physics


However, $\quad \delta_{Z h} \propto g_{z}$, while $\delta_{\lambda_{3}}$ is not related to $\lambda_{3, \mathrm{SM}}$

With some tuning, one can find models in which $\delta_{\lambda_{3}}>\delta_{Z h}$

## HEFT VS SMEFT

$$
\text { SMEFT Lagrangian: } \mathscr{L}_{\text {SMEFT }}=\mathscr{L}_{S M}+c_{1} \frac{\mathcal{O}_{1}^{(6)}}{\Lambda^{2}}+c_{2} \frac{\mathcal{O}_{2}^{(6)}}{\Lambda^{2}}+\ldots+c_{3} \frac{\mathcal{O}_{3}^{(8)}}{\Lambda^{4}}+c_{4} \frac{\mathcal{O}_{1}^{(8)}}{\Lambda^{4}}+\ldots
$$

## HEFT Lagrangian:



## LOOK AT WW TO NH

> We use the Equivalence Theorem (collisions at several TeV, Higgs is "massless")



$$
=-\frac{n!a_{n}}{2 v^{n}} s
$$



## LOOK AT WW TO NH

We use the EqTh (collisions at several TeV)


$$
=-\frac{n!a_{n}}{2 v^{n}} s
$$

$$
\text { processes with } \mathbf{n} \text { higgsses are }
$$

$$
\begin{aligned}
& \sigma_{\omega \omega \rightarrow 2 h}=\frac{8 \pi^{3} \hat{a}_{2}^{2}}{s}\left(\frac{s}{16 \pi^{2} v^{2}}\right)^{2} \\
& \sigma_{\omega \omega \rightarrow 3 h}=\frac{12 \pi^{3} \hat{a}_{3}^{2}}{s}\left(\frac{s}{16 \pi^{2} v^{2}}\right)^{3}
\end{aligned}
$$ suppressed by increasing factors of Lambda, in HEFT this is not necessarily the case (smoking gun!)

BSM scenarios often predict large nH
Xsecs

## LOOK AT WW TO NH

We use the EqTh (collisions at several TeV)

We are not looking at a global fit, but at interesting pseudo observables

Whereas in SMEFT, corrections to processes with n higgsses are suppressed by increasing factors of Lambda, in HEFT this is not necessarily the case (smoking gun!)
$>$
BSM scenarios often predict large nH Xsecs


## WW TO NH



## WW TO NH

$>$ We don't need a precision mesaurement. If we observe an excess in the pp to HH production with respect to the SM, we can rule the SMEFT and assume more complex scenarios

This would then be confirmed by a 3H production measurement



## PART IV: MAP THE HEFT TO SMEFT

## WW TO NH

## By comparing the Lagrangians term-by-term we can map the HEFT to the SMEFT

$$
\begin{aligned}
a_{1} / 2 & =a=1+\frac{d}{2}+\frac{d^{2}}{2}\left(\frac{3}{4}+\rho\right)+\mathcal{O}\left(d^{3}\right) \\
a_{2} & =b=1+2 d+3 d^{2}(1+\rho)+\mathcal{O}\left(d^{3}\right) \\
a_{3} & =\frac{4}{3} d+d^{2}\left(\frac{14}{3}+4 \rho\right)+\mathcal{O}\left(d^{3}\right) \\
a_{4} & =\frac{1}{3} d+d^{2}\left(\frac{11}{3}+3 \rho\right)+\mathcal{O}\left(d^{3}\right) \\
a_{5} & =d^{2}\left(\frac{22}{15}+\frac{6}{5} \rho\right)+\mathcal{O}\left(d^{3}\right) \\
a_{6} & =d^{2}\left(\frac{11}{45}+\frac{1}{5} \rho\right)+\mathcal{O}\left(d^{3}\right)
\end{aligned}
$$

$$
\begin{aligned}
\sigma_{\omega \omega \rightarrow h h}^{\mathrm{EFT}-\max } & =\frac{\epsilon^{2}}{8 \pi s} \\
\sigma_{\omega \omega \rightarrow 3 h}^{\mathrm{EFT}-\max } & =\left(\frac{v^{2}}{16 \pi^{2} s}\right) \frac{4 \epsilon^{4}}{3 \pi s}\left(1+\rho_{\max }\right)^{2} \\
\sigma_{\omega \omega \rightarrow 4 h}^{\mathrm{EFT}-\max } & =\left(\frac{1}{16 \pi^{2}}\right)^{2} \frac{\epsilon^{4}}{18 \pi s}\left(\left(1+\rho_{\max }\right)^{2}+2\left(1+\rho_{\max }\right) \chi_{1}+\chi_{2}\right)
\end{aligned}
$$

$$
d=\frac{2 v^{2} c_{H \square}^{(6)}}{\Lambda^{2}}, \quad \rho=\frac{c_{H \square}^{(8)}}{2\left(c_{H \square}^{(6)}\right)^{2}}
$$

> See more details in https://arxiv.org/abs/ $\underline{2204.01763}$ and https://arxiv.org/abs/ $\underline{2207.09848}$

## WW TO NH

What else can we do? Look at the available $\kappa_{v}$ and $\kappa_{2 v}$ measurements. Another way of "ruling out " the SMEFT



A theory is only a proper theory if it can be falsified...

## WW TO NH AT CLIC

Going a bit more pheno-ish, we use the EWA approximation to predict cross sections at an ee collider (CLIC) at 3 TeV



## CONCLUSIONS

## What can we do until HL-LHC

- Plenty of new HH results, always sharper
- We don't need a precision measurement to rule-out or confirm new physics, we can look at (the lack of) a small excess in HH as a smoking gun
- SMEFT fits of Run-2 are giving tighter and tighter constraints on the dim-6 Wilson coefficients. Time to consider broader EFTs
- (That is no problem, since we can map them back and forth)
- Next step: full phenomenological study to reproduce the ATLAS and CMS yields for HH production, and the HHH projections


## THANK YOU!

And many thanks, Peter!


