

Experimental overview of EFT at LHC

Aram Apyan on behalf of the ATLAS and CMS collaborations

June, LHCP 2024

Effective Field Theory

"The present educated view of the standard model, and of general relativity, is again that these are the leading terms in effective field theories." S. Weinberg, hep-th/9702027

- For dim=6 Warsaw basis often used to define complete set of independent operators
 - 59 operators for CP-even and restricted-flavor scenario

Outlook

See the talks by G. Callea and S. Chatterjee for Higgs EFT See the talks by L. Keszeghová and J. Li for Top EFT

- Impossible to cover the wealth of interesting ATLAS and CMS results in a 15 minute talk
- Identify some interesting themes and topics of discussion:
 - Selected highlights of recent results
 - Impact of differential cross sections on dim-6 (interference)
 - Dealing with the unitarity violation
 - The interplay between dim-8 and dim-6 operators
 - Towards a global combination

$$\sigma = |\mathcal{A}_{\rm SM}|^2 + \sum_{i} \frac{c_i^{(6)}}{\Lambda^2} 2\text{Re} \left(\mathcal{A}_i^{(6)} \mathcal{A}_{\rm SM}^* \right) + \sum_{i} \frac{\left(c_i^{(6)} \right)^2}{\Lambda^4} \left| \mathcal{A}_i^{(6)} \right|^2 + \sum_{i < j} \frac{c_i^{(6)} c_j^{(6)}}{\Lambda^4} 2\text{Re} \left(\mathcal{A}_i^{(6)} \mathcal{A}_j^{(6)*} \right)$$

SM Interference of SM and NP Pure NP

Dim-6 and differential cross sections

- Inclusive Diboson (VV) and V+2j processes probe triple gauge couplings
 - Effect of the interference is not detectable when considering only invariant mass and momentum observables
- Increasing the sensitivity to interference (which scales as Λ^{-2}) is important for improving the validity of constraints
 - The leading dim-8 contributions also enter at Λ^{-4} and unclear how to interpret the pure dim-6 BSM contribution

Arxiv:2006.15458 4

Dim-6 and differential cross sections

- Different approaches employed to enhance the interference (linear) contribution:
 - ATLAS WW result requires presence of an high pT jet to partially mitigate the interference suppression
 - CMS Wγ result uses a simultaneous measurement of the photon pT and the azimuthal angle of the charged lepton to enhance the interference

Unitarity

- A truncated EFT expansion violates unitarity at some energy scale
- Recent ATLAS and CMS results dealt with unitarity in number of ways
 - Do nothing and report the constraints without unitarity considerations
 - Report a unitarity bound corresponding to the observed limit
 - Report constraints as a function of cut-off scale (clipping)
- Vector boson scattering (VBS) processes
 - Contributions to quartic vertex appear first at dim-8 in EFT

Dim-8 operators

- Typically 18 independent charge-conjugate and parity conserving operators are considered
 - EFT model generated at leading order. NLO EW and QCD effects are important in VBS
- Recent ATLAS same-sign WW and WZ EFT results
 - Similar competitive results from CMS in Arxiv:2005.01173

7

Interplay of dim-8 and dim-6 operators

- Effects of dim-6 operators affecting the triple gauge couplings has been previously ignored in VBS results
 - The effect of dim-6 operators in VBS results is an interesting question
- New CMS VBS same-sign WW result with one W boson decaying to hadronic tau lepton
 - First simultaneous extraction of dim-6 and dim-8 constraints
 - Significance of EW same-sign WW with tau decays is 2.7 standard deviations

Cross section for dim-6 + dim-8 operator: $\sigma_{SMEFT} = \sigma_{SM} + c_{d-6}\sigma_{int} + c_{d-6}^2\sigma_{d-6} + c_{d-8}\sigma_{int} + c_{d-8}^2\sigma_{d-8}$

CMS-SMP-22-008

Global combined fits

- Our target is to perform a global fit of many operators with many input physics measurements
 - Ultimately in the future try to simultaneously fit dim-6 and dim-8 operators with many measurements
- Significant step towards this direction performed by ATLAS in 2022
 - Dim-6 fit using Higgs+Diboson+EWPO data
- Great care taken to get details right:
 - Indirect impact of operators on Higgs BRs
 - Take propagator effects into account
 - Handle acceptance effects in certain Higgs decay kinematics
 - Consider impact of certain operators on Fermi constant

ATL-PHYS-PUB-2022-037

Global combined fits

PCA analysis to extract the relevant eigenvectors

ATL-PHYS-PUB-2022-037

Dim-5 operators

- Dim-5 Weinberg operator
 - Violates lepton conservation and can generate neutrino mass
- ATLAS and CMS studied same-sign lljj final state to set constraints
 - $\mu\mu$, $e\mu$, and ee final states

 $\mathcal{L}_{5} = \frac{C_{5}^{\ell\ell'}}{\Lambda} \left[\Phi \cdot \overline{L}_{\ell}^{c} \right] \left[L_{\ell'} \cdot \Phi \right]$

$$m_{\ell\ell'} = C_5^{\ell\ell'} \upsilon^2 / \Lambda$$

 Upper limits on effective Majorana mass in µµ

- ATLAS: 16.7 GeV
- CMS: 10.8 GeV

06/07/24

Arxiv:2403.15016

Arxiv:2305.14931

Arxiv:2206.08956 ¹¹

Observation of $\gamma\gamma \rightarrow \tau\tau$

- CMS observation of photon induced production of pair of τ leptons in pp collisions
 - Previously observed by ATLAS and CMS in PbPb collisions
 - Run 2 data sample at 13 TeV and integrated luminosity of 138 fb⁻¹
 - Events with small number of tracks are close to the di-tau vertex are selected to isolate photon induced processes
 - Correct the number of tracks in simulation

06/07/24 CMS-PAS-SMP-23-005

Ntracks

Anomalous magnetic moment

- CMS observation of photon induced production of pair of τ leptons in pp collisions
 - $\gamma\gamma \rightarrow \tau\tau$ in pp: 5.3 (6.5) observed (expected) standard deviations
 - Constrain the anomalous electromagnetic moments of τ lepton using the visible mass distribution $\delta a_{\tau} = \frac{2m_{\tau}}{e} \frac{\sqrt{2}v}{\Lambda^2} \operatorname{Re} [C_{\tau\gamma}]$

$$a_{\tau} = 0.0009^{+0.0016}_{-0.0015} \text{ (syst)}^{+0.0028}_{-0.0027} \text{ (stat)}.$$

$$\delta a_{\tau} = \frac{2m_{\tau}}{e} \frac{\sqrt{2}v}{\Lambda^2} \operatorname{Re} \left[C_{\tau\gamma} \right]$$

$$\delta d_{\tau} = \frac{\sqrt{2}v}{\Lambda^2} \operatorname{Im} \left[C_{\tau\gamma} \right]$$

$$C_{\tau\gamma} = \left(\cos\theta_W C_{\tau B} - \sin\theta_W C_{\tau W} \right)$$

$$C_{T} = \left(\cos\theta_W C_{\tau B} - \sin\theta_W C_{\tau W} \right)$$

$$C_{T} = \left(\cos\theta_W C_{\tau B} - \sin\theta_W C_{\tau W} \right)$$

Summary

- Wealth of EFT fit results by ATLAS and CMS
 - Diverse range of analyses are used to set constraints
 - Many interesting recent results not covered in this talk
- Detailed differential measurements can lead to greater sensitivity for the interference (linear) terms
- The dim-6 and dim-8 operator interplay in certain measurements (VBS) is an important consideration
 - The unitarity of the constraints needs to be taken into account
- A combined global fit is challenging but an important goal
 - Progress towards this goal in recent results

ADDITIONAL MATERIAL

VBS measurements

- From first observations->precision measurements
 - ATLAS and CMS completing Run 2 measurements
- Probe EW symmetry breaking
- Probe triple and quartic gauge couplings
- Theory predictions: NLO corrections
- Recent results to highlights:

ATLAS global fit

Higgs data

	inggs uata						
Decay channel	Target Production Modes	${\cal L}~[{ m fb}^-$	¹] Ref.	-			
$\overline{H \to \gamma \gamma}$	$\mathrm{ggF},\mathrm{VBF},WH,ZH,tar{t}H,tH$	139	[10]	-			
$H \rightarrow ZZ^*$	$ggF, VBF, WH, ZH, t\bar{t}H(4\ell)$	139	[11]				
$H \to WW^*$	ggF, VBF	139	[12]				
$H \to \tau \tau$	$ggF, VBF, WH, ZH, t\bar{t}H(\tau_{had}\tau_{had})$	139	[13]				
	WH,ZH	139	[14,15,16]	Z pole data			
$H ightarrow b ar{b}$	VBF	126	[17]	·			
	$tar{t}H$	139	[18]	Observable	Measurement	Prediction	Ratio
				Γ_Z [MeV]	2495.2 ± 2.3	2495.7 ± 1	0.9998 ± 0.0010
				R^0_ℓ	20.767 ± 0.025	20.758 ± 0.008	1.0004 ± 0.0013
				R_c^0	0.1721 ± 0.0030	0.17223 ± 0.00003	0.999 ± 0.017
				R_b^0	0.21629 ± 0.00066	0.21586 ± 0.00003	1.0020 ± 0.0031
				$A_{\rm FB}^{0,c}$	0.0171 ± 0.0010	0.01718 ± 0.00037	0.995 ± 0.062
				$A_{\text{FB}}^{\circ,\circ}$	0.0707 ± 0.0035	0.0758 ± 0.0012	0.932 ± 0.048
FW data				$A_{\rm FB}^{\circ,\circ}$	0.0992 ± 0.0016	0.1062 ± 0.0016	0.935 ± 0.021
				$\sigma_{ m had}$ [pb]	41488 ± 6	41489 ± 5	0.99998 ± 0.00019
Process	Important phase space requirements		Observable	${\cal L}~[{ m fb}^{-1}]$	Ref.		
$pp \to e^{\pm} \nu \mu^{\mp} \nu$	$m_{\ell\ell} > 55 GeV, p_{ m T}^{ m jet} < 35 GeV$		$p_{\mathrm{T}}^{\mathrm{lead.~lep.}}$	36	[19]		
$pp \to \ell^{\pm} \nu \ell^{+} \ell^{-}$	$m_{\ell\ell} \in (81, 101) GeV$		$m_{ m T}^{WZ}$	36	[20]		
$pp \rightarrow \ell^+ \ell^- \ell^+ \ell^-$	$m_{4\ell} > 180 GeV$		m_{Z2}	139	[21]		
$pp ightarrow \ell^+ \ell^- jj$	$m_{jj} > 1000 GeV, m_{\ell\ell} \in (81, 101)$)GeV	$\Delta \phi_{jj}$	139	[22]		

Combined fits in top sector

- CMS tt+leptons analysis
 - ttZ, ttH, ttW, tttt, tZq, tHq
- Setting constraints on 26 independent Wilson coefficients
- Two scenarios are reported:
 - All Wilson coefficients are profiled
 - Only one/two are free and others are fixed to zero
- Limits don't degrade significantly going from individual to profiled

• More details in a talk given by Jack Li

Arxiv:2307.15761

Combined fits in top sector

- ATLAS simultaneous analysis of ttZ and ttγ production to constrain EFT parameters
 - Use the distributions of the Z and γ bosons to simultaneously extract two complex Wilson Coefficients
 - Top EW dipole moments:

$$C_{tZ} = \cos \theta_W C_{tW} - \sin \theta_W C_{tB}$$

$$C_{t\gamma} = \sin \theta_W C_{tW} + \cos \theta_W C_{tB}$$

- Combination of the measurements significantly improves sensitivity
 - No sensitivity to linear interference term
 - Marginalized fits are obtained by integrating the posterior probability distribution over the other coefficients

19

Anomalous neutral gauge couplings

- ATLAS study on CP properties of the ZZ production
 - Results interpreted to constrain anomalous neutral triple gauge couplings
 - Direct probe of the interference term via angular optimal observables

Arxiv:2310.04350