Prompt searches in ATLAS Nicola de Biase

Nicola de Biase On behalf of the ATLAS collaboration

LHCP 2024 Boston

Introduction

- > by the SM
 - What is the nature of Dark Matter?
 - Why is the EW scale much smaller than the Planck scale? (Hierarchy problem)
- Many BSM theories try to solve these problems >
- ATLAS collaboration pursues an extensive BSM search program >
 - New gauge vector bosons
 - Additional scalar particles
 - Supersymmetry (SUSY)
- Presenting a selection of latest results >
 - More <u>public results</u>

Despite its success in describing a wide variety of phenomena, many questions/problems are left unanswered

R-parity violating $\tilde{t} \rightarrow b\ell$ Introduction

- R-parity conservation is often invoked in SUSY to
 - Prevent violation of barion (B) and lepton (L) numbers
 - Ensure proton stability
- R-parity-violating theories can also achieve these requirements
 - B-L-conserving theories are theoretically well motivated (arXiv:1401.7989)
- > B-L theories
 - stop squark \tilde{t} is the lightest SUSY particle
 - \tilde{t} can decay to SM particles
- > <u>Search</u> for $\tilde{t}\tilde{t}^* \to \ell^+\ell^- b\bar{b}$

R-parity violating $\tilde{t} \rightarrow b\ell$ Strategy

- Event selection >
 - ≥ 2 leptons (e, μ)
 - ≥ 2 jets (≥ 1 b-tag)
- 2 possible $b \ell$ pair assignments >

Search for resonance on distribution of largest jet+ ℓ mass >

R-parity violating $\tilde{t} \rightarrow b\ell$ **Results**

- > Upper limits on stop mass
- > 2 limits calculated for each choice of BR
 - From lepton-flavour-agnostic fit
 - Best performance for $B(\tilde{t} \rightarrow be) \approx B(\tilde{t} \rightarrow b\mu)$
 - From lepton-flavour-aware fit
 - Best performance for $B(\tilde{t} \rightarrow be) \neq B(\tilde{t} \rightarrow b\mu)$
- > Strictest limits used for final results

 $B(\tilde{t} \to be) + B(\tilde{t} \to b\mu) + B(\tilde{t} \to b\tau) = 1$

$W' \rightarrow \tau \nu$ — arXiv:2402.16576 Introduction

- > Search for spin-1 resonance W' in τ +Missing E_T (MET) final state
- > Motivated by models predicting additional vector gauge bosons
 - SSM: SM-like couplings, preserves lepton flavour universality (LFU)
 - NUGIM: Not LFU-preserving
 - Parameter θ_{NU} regulates coupling to third generation of fermions

$W' \to \tau \nu$ – arXiv:2402.16576 Strategy

- Event selection via Missing E_T triggers >
- Targeting only hadronic τ decays >
- BDT-based classification of tracks in the core of the reconstructed τ >
 - Improves the reconstruction efficiency and rejection of jets faking τ
- Statistical analysis based on transverse mass >

$$m_T = \sqrt{2E_T^{\text{miss}} p_T^{\tau_{\text{had-vis}}} \left(1 - \cos \Delta \phi_{\text{had-vis}, E_T^{\text{miss}}}\right)}$$

$W' \rightarrow \tau \nu$ — arXiv:2402.16576 Results

Upper limit on x-section X BR SSM

Excluded region in $m_{W'} - \cot \theta_{NU}$ plane NUGIM

Searches for additional scalars

- Many BSM models include extended Higgs sectors >
- Simple extensions consistent with constraints: 2HDM >
 - Predict additional Higgs doublet
 - Total of 5 scalar particles
- 2HDMs fit in more complex theories >
 - SUSY (e.g. hMSSM)
 - WIMP DM models (2HDM+a, pseudo scalar mediator to DM)
- Relevant parameters >
 - m_A , m_H , Higgs VEV ratio $\tan\beta$
 - At low tan β , heavy Higgs couples preferentially to top quarks

Signal processes in 2HDM @ LHC

 $A/H \rightarrow t\bar{t}$

Dominant mode gluon-gluon fusion (2 top quarks) Strong interference with SM $t\bar{t}$

arXiv:2404.18986

DESY.

 $t\bar{t}A/H \rightarrow t\bar{t}t\bar{t}$

Subdominant mode Top-associated production (4 top quarks) Negligible interference with SM $t\bar{t}t\bar{t}$

ATLAS-CONF-2024-002

$t\bar{t}A/H \rightarrow t\bar{t}t\bar{t}$ Strategy (1)

- Motivated by excess in $t\bar{t}t\bar{t}$ x-section measured by ATLAS and CMS >
- Two orthogonal channels >
 - 1L, \geq 10 jets, 4 *b*-jets
 - $2LOS, \geq 8 jets, \geq 4 b jets$
- Dominant backgrounds >
 - $t\bar{t}$ +jets
 - SM $t\bar{t}t\bar{t}$
- Events categorisation based on jet and b-jet multiplicity >
 - Useful to correct and validate $t\bar{t}$ +jets estimate

1L

Name	$N_b^{60\%}$	$N_b^{70\%}$	$N_{b}^{85\%}$
2b	-	= 2	-
3bL	≤ 2	= 3	-
3bH	= 3	= 3	> 3
3bV	= 3	= 3	= 3
\geq 4b (2LOS)	-	≥ 4	-
4b (1L)	-	= 4	-
≥5b (1L)	-	≥ 5	-

$t\bar{t}A/H \rightarrow t\bar{t}t\bar{t}$ Strategy (2)

- > $t\bar{t}$ +jets background corrections
 - Flavour rescaling
 - Fits to data in CRs to correct fractions of $t\bar{t}$ +light $t\bar{t} + \ge 1c$, $t\bar{t} + \ge 1b$ events
 - NN reweighting to improve modelling of kinematic variables
 - DNN trained to distinguish between MC and data in CRs
 - DNN score used to reweight MC in SR
- Solution Series A Series A
 - Statistical analysis on GNN score

$t\bar{t}A/H \rightarrow t\bar{t}t\bar{t}$ **Results – Excluded regions in** m_A – tan β **plane**

Largest deviation from SM in the search stage: $m_A = m_H = 500$ GeV, at 2.1 σ

1L/2LOS

Combination 1L/2LOS + 2LSS/3L

$A/H \rightarrow t\bar{t}$ **Strategy**

- Signal-background interference effect >
 - Model-dependent peak-dip structure in $m_{t\bar{t}}$ spectrum

- Two orthogonal channels >
 - 2-leptons
 - Fits on $m_{\ell\ell bb}$
 - 1-lepton
 - Resolved+Merged topologies
 - Fits on $m_{t\bar{t}}$

$$A/H \rightarrow t\bar{t}$$

Statistical analysis with interference

Quadratic dependence of the bin content expectation from POI $\sqrt{\mu}$ >

•
$$\nu = \mu \cdot S + \sqrt{\mu} \cdot I + B = (\mu - \sqrt{\mu}) \cdot S + \sqrt{\mu} \cdot$$

- Interference shape changes with $\sqrt{\mu}$
- Double minima can appear in CLs scan
- Upper limits on $\sqrt{\mu}$ not well defined
- Requires special statistical treatment
 - Choice of test statistics
 - Search stage: quantify deviation from SM $\sqrt{\mu}=0$ hypothesis
 - Exclusion stage: reject BSM hypothesis $\sqrt{\mu}=1$ in favour of SM $\sqrt{\mu}=0$

$A/H \rightarrow t\bar{t}$ **Results – Excluded regions**

Largest deviation from SM in the search stage: $m_A=800$ GeV, $m_A/\Gamma_A=$ 10% at 2.3 σ

2HDM+a m_a – tan β plane

Strongest constraint from neutral scalar search!

$A/H \rightarrow t\bar{t}$ **Results – Excluded regions**

Conclusions

- ATLAS has a very diverse BSM programme >
- Run-2 has provided us with a wide variety of searches, with exotics signatures and novel techniques >
- Various searches presented today, constraining parameter space of different models >
- No BSM physics found but the quest continues! >
- LHC Run-3 is in progress >
 - New and exciting results await us

