

Recent results in prompt searches at CMS

LHCp 2024,

June 3rd 2024, Boston

Carlos Erice on behalf of the CMS Collaboration

Introduction

"Prompt searches": those in which the **main interaction happens next to the collision point**:

- Very extensive prompt search program at CMS: around 500 papers published so far!
- New searches require us to push boundaries and go out of the trodden path: ingenuity is the main characteristic of current prompt searches.

From <u>JHEP 07 (2021) 208</u>

What is novel? (topics in this talk)

Using advanced reconstruction and identification techniques:

- $X \rightarrow ZH \rightarrow (ee/\mu\mu/\nu\nu)+J$, <u>CMS-PAS-B2G-23-008</u>.
- High mass γγ, <u>arXiv:2405.09320</u>.

Improving our background estimations:

- RPV SUSY with jet scaling patterns, <u>CMS-PAS-SUS-23-015</u>.
- Excited τ, <u>CMS-PAS-EXO-22-007</u>.

Back-to-back boosted jet + dilepton (ee/µµ) or p_T^{miss} (vv) system.

- Boosted jet required to **not contain** 2 b-tagged sub-jets.
- Target is to improve on the ZH search <u>EPJ C 81 (2021) 688</u> with higher sensitivity to non-bb Higgs decays:
 - Use **ParticleNet** (imaging with gCNN for jet tagging, <u>link</u>) for the identification of the H cluster.

Target $H \rightarrow VV \rightarrow qqqq$ and $H \rightarrow cc$ decays

Validation regions/ Signal regions separated by the tightness on the reconstructed H criteria:

- Use validation region to validate falling background analytical fit + set order of fitting function.
- Signal region is then fit with resulting function to extract signal:

 $f_N(x) = \exp$

138 fb⁻¹ (13 TeV)

Diphoton resonant search:

- Uses the bump hunt technique with discrete profiling.
- Dedicated high p_T photon ID designed for high mass resonances.
- Two channels based on whether a photon is in the ECAL endcap.

Diphoton **non**-resonant search in the same paper with the same target of high p_{τ} photons:

- Rely on MC for yy background modelling. Tight-to-loose method for non prompt y
- Signal predictions from additional ADD (extra dimensions)/clockwork predict deviations at the high mass tails.

RPV SUSY with jet scaling patterns - <u>CMS-PAS-SUS-23-015</u>

A search in final states 3 light leptons + multiple (b-)jets Its main challenge is the modelling of ttZ and WZ:

- Parton showering is known to not model high N_{iet} regions well.
- Instead of relying in pure MC, jet multiplicity corrections are derived from data in sidebands where jets are produced by similar processes.

 $\widetilde{\chi}_2^0$

 $\widetilde{\chi}_1^{\pm}$

 $\widetilde{\chi}_1^0$

RPV SUSY with jet scaling patterns - CMS-PAS-SUS-23-015

The S_{T} variable (scalar sum of the p_{T} of all leptons, jets and p_{T}^{miss}) is used as a discrimination variable:

- In 2 different categories with/without b tagged jets.
- And 4 different regions of increasing Jet multiplicity.

First result on prompt hadronic RPV decays for electroweakino production!

Excited T - CMS-PAS-EXO-22-007

CI model that predicts a $\tau\tau$ + high $p_{\tau}\gamma$ final state.

Several steps to reconstruct the mass of the τ^* in $e\tau_h$, $\mu\tau_h$, and $\tau_h\tau_h$

- "Collinear approximation": assume that v_{τ} is collinear with the visible part of the τ decay (either of τ_{h} , e, μ).

New!

Tinv,2 🛩

Λ

MET

Tvis.2

Split p_{τ}^{miss} into

components from

vis.1

Cinv.1

Excited T - CMS-PAS-EXO-22-007

The peculiarity of the L shape is used to define a parametric SR selection:

- Same data is used for all signal interpretations but binning depends on the m_{r*} hypothesis being tested.

Setting upper limits on the mass on m_{τ^*} of 2.7/4.8 TeV depending on the assumptions on the CI energy scale.

New!

Similar performance to the results obtained by ATLAS in <u>JHEP 06 (2023)</u> <u>199</u> (with a different strategy based on ττjj).

Other new prompt searches not in this talk

Summary

Prompt searches are a pillar of the CMS search program with a very broad range of signatures being explored:

- We are in era where we need to push the boundaries to increase our sensitivity:
 - Developing new reconstruction and identification techniques...

... and new background estimation methods.

- Allow us to probe BSM even further.

- Stay tuned for the coming new results!

Signal region fits for charged lepton channels

Uncertainty breakdown in the analysis (effects on signal):

Source	uncertainty	Source	uncertainty
H jet identification	2.0–5.0%	Trigger	0.9–1.5%
b tagging veto	0.4–1.0%	Muon identification	0.1–0.3%
Jet energy scale and resolution	0.2–2.0%	Electron identification	5.2-5.9%
Pileup	0.3–1.8%	Lepton reconstruction	0.9–1.7%
Luminosity	1.6%	PDF	0.3–13.4%
Prefiring	0.3–0.8%	QCD scales	6.6–17.2%

Resonant search, scalar model

RPV SUSY with jet scaling patterns - CMS-PAS-SUS-23-015

Excited T - CMS-PAS-EXO-22-007

23

Excited T - CMS-PAS-EXO-22-007

Source	eeγ	μμγ	εμγ	eτ _h γ	$\mu \tau_h \gamma$	$\tau_{\rm h} \tau_{\rm h} \gamma$
Luminosity	2.0	2.1	2.1	2.1,2.1	2.0,2.1	2.1,2.1
DeepTau anti-jet 1-prong	+	-16	-	3.5,9.4	3.7,8.7	9.0,19
DeepTau anti-jet 3-prong	1-	- \ \	-	1.4,1.5	1.2,1.1	2.8,2.6
$\tau_{\rm h} \tau_{\rm h}$ trigger 1-prong	- /	- \ \	-	-,-	-,-	8.2,11
$\tau_{\rm h} \tau_{\rm h}$ trigger 3-prong	- \	34	-	-,-	-,-	2.2,1.2
$\tau_{\rm h}$ energy scale	-	-	-	0.3,0.1	0.5,0.1	2.0,0.0
e id	0.9	-	0.6	0.8,1.3	-,-	-,-
γ id	5.5	5.7	4.6	2.1,14	2.1,13	2.8,14
eµ trigger	-	-	1.1	-,-	-,-	-,-
b-tagging	-	-	-	1.1,0.0	1.0,0.0	-,-
PDF sets	-	-	-	-,23	-,22	-,24

New!

Excited T - CMS-PAS-EXO-22-007

CMS-PAS-EXO-22-007

<u>IHEP 06 (2023) 199</u>

Other recent prompt analysis

- The hadronic version of the analysis (<u>PLB 826</u> (2022) 136888) had a (local) ~3σ excess.

- Leptonic analysis provides a cleaner final state to cross-check with the drawback of less statistical power.

- Very inclusive selection leading to broad -and flat at high $\rm m_{\rm X}\mathchar`$ signal efficiency.

teria 'Y	Selections	Electron channel	Muon channel			
	Lepton $p_{\rm T}$	> 35 GeV	> 30 GeV			
	$m_{\ell\gamma}$ mass	$ m_{\rm e\gamma} - 91.0 > 20 {\rm GeV}$				
cri V <	Lepton ID	Tight				
kg. and	-Photon $p_{\rm T}$	$0.4m_{ m T} < p_{ m T}\left(\gamma ight) < 0.55m_{ m T}$				
anti-b nst tt	$p_{ m T}^{ m miss}$	$p_{ m T}^{ m miss} > 40{ m GeV}$				
	Photon η	$ \eta < 1.44$				
ey gai	Photon ID	Medium				
y N	b jet veto	0 medium-tagged b jets				

Note that the leptonic search provides the most improvement at lower masses, at higher masses (> 2 TeV) starts to get closer in performance.

Merged photons - arXiv:2405.00834 (sub. to PRL)

In a chain of two resonances (X/ ϕ) such that $m_{\chi} >> m_{\phi}$ can lead to pairs of very boosted ϕ which in turn produce photon pairs to merge:

- Designed a merged photon reconstruction + identification algorithm based on imaging techniques over ECAL hits.
- Includes both a classifier $(\gamma\gamma/\gamma/jet)$ and a mass regressor:

Validated in $\boldsymbol{\eta}$ meson decays

Merged photons - arXiv:2405.00834 (sub. to PRL)

Search is based on a bump hunt over the m_{rr} distribution.

- Discrete profiling is used to model the SM background.
- The fit is performed in multiple slices of $\alpha = m_r/m_{rr}$:

VBF Z' (WW/TT) - CMS-PAS-EXO-21-015

New!

 $m(\mu,\tau,p_{-}^{miss})$ [GeV]

 $\tau.W$

First interpretations of VBF produced Z' at the LHC Already provident limits in masses ranging from 300 GeV to 3 TeV

Prompt searches in other talks

Many more talks related to prompt searches in CMS, be sure to check them!

- <u>Recent results on dark sectors in CMS</u>
- HNLs in CMS
- Physics of dark sectors in CMS
- Resonant Searches for Dark Matter Mediators with CMS
- Leptoquark Searches with 3rd Generation Final States in CMS
- Leptoquark Searches with Electrons and Muons in the Final State in CMS
- Searches for New Massive Scalars in CMS
- Exotic Higgs decays with CMS
- Searches for BSM in top final states in CMS
- Exotic tops: anomalous interactions, non-standard decays in CMS
- Searches for VLQs in CMS
- Searches for VLLs in CMS