Recent Results on LPs in ATLAS

LHCP 2024 Northeastern University, Boston Friday, June/07/2024

Ismet Siral (CERN) on Behalf Of ATLAS Collaboration

Why Long Lived Particles (LLPs)

- ATLAS has a broad LLP program, targeting a wide range off LLP signatures and lifetimes.
- Why do we look for LLPs?
 - prompt ATLAS signature searches opening up a new sea of particle signatures
 - - triggering, reconstruction and background handling.

Why Long Lived Particles (LLPs)

- ATLAS has a targeting a wi signatures an
- Why do we lo
 - LLPs breal prompt ATL opening up signatures
 - It is an unc
 - Requires triggering backgrou

*Not precise

0.01

Prompt Decays

Ismet Siral, CERN

And we also have interesting excesses that need to be understood.

Plot taken from: https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2018-42/

Introduction

- Today we have two ATLAS talks on these LLP signatures,
 - This talk that will try to give a broad view of the LLP signatures
 - Another talk on LLP signatures with displaced vertices.
- Today we will be covering three new results:
 - Search for LLPs with Large dE/dx

 - Tau final states

Search for LLPs with Large dE/dx

Ismet Siral, CERN

Search for LLPs with Large dE/dx

- The goal of this search is to detect the masses LLPs in ATLAS using:
 - Using the ionisation energy loss (dE/dx) in ATLAS Pixels we can extract the $\beta\gamma$
 - Using ATLAS calorimeter to measure the time-of-flight to extract the velocity
 - Reconstruct the mass of these tracks using $p/\beta \gamma = M$
- It's sensitive to majority of charged LLPs with life-times longer than 1ns.
 - Considered models are charginos, sleptons and R-hadrons.
 - Today new chargino results will become public.
- This analysis is a continuation of the analyses: ATLAS-CONF-2023-044, JHEP 2306 (2023) 158

Link to the Publication: ATLAS-CONF-2023-044 ATL-PHYS-PUB-2024-009

Search for LLPs with Large dE/dx Analysis Strategy

- The search strategy of this analysis is:
 - Identifying isolated tracks with high transverse momentum (p_T), large specific ionisation and a long time-of-flight.
 - Reconstruct the mass using the $p/\beta \gamma = M$
 - Generate data-driven background distributions
- Identify 2-D trapezoidal mass windows containing good signal over background ratio.

Events are triggered with a E_T^{miss} Trigger

Good quality , high $p_T > 120$ GeV, central $|\eta| < 1.6$ tracks are selected. The quality is ensured by hit requirements.

Tracks associated with jets, w bosons, tau's and electrons are removed by various isolation and m_T (Track, $E_T^{m_{1SS}}$) requirements

An ionization cut dE/dx > 1.8 is applied in-order to identify particles that have low $\beta \gamma$ which is correlated to large dE/dx. The ionization cut varies across signal categories.

 $A \beta_{ToF} < \beta_{cut}(\eta)$ where $\beta_{cut}(\eta) = 1 - 2\sigma_{ToF}$ is applied to detect particles that are slow moving.

	trapezoid parameters, cone angle O			
target mass [GeV]	lower edge mass [GeV]	upper edge		
700	530	1		
800	570	2		
900	620	5		
1000	720	6		
1100	780	6		
1200	860	6		
1300	950	6		
1400	960	6		

Link to the Publication: ATLAS-CONF-2023-044 ATL-PHYS-PUB-2024-009

- In total 9 events are observed over an expected background of 5.1 events.

• Six of these events are inside the mass compatibility cone containing the trapezoid

Link to the Publication: ATLAS-CONF-2023-044 ATL-PHYS-PUB-2024-009

Search for LLPs with Large dE/dx SR, **√**s=13 TeV, 7

- In total 9 ev
 - Six of thes

From the previous round of the analysis, without a 140 fb⁻ cut on time of flight from the caloirmeter. <β erved $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^$ p_{τ}^{trk} > 120 GeV, $|\eta|$ < 1.8 Overflow SUSY-2018-42 + m(\tilde{g})_⊥ = 2.2 TeV, m($\tilde{\chi}_1^0$) = 100 GeV, τ(\tilde{g}) = 10 ns Observed $\mathbf{r} \cdot \mathbf{m}(\widetilde{\chi}_{1}^{\pm}) = 1.3 \text{ TeV}, \ \tau(\widetilde{\chi}_{1}^{\pm}) = 10 \text{ ns}$ --;-- $m(\tilde{\tau})' = 400 \text{ GeV}, \tau(\tilde{\tau})' = 10 \text{ ns}$ Expected 600 [GeV] 2000 3000 4000 5000 m [GeV] e trapezoid

Link to the Publication: ATLAS-CONF-2023-044 ATL-PHYS-PUB-2024-009

- With combination of other ATLAS analysis, we have good coverage of Wino like charginos.
 - tracks

• With this search, we have expanded our existing chargino limits above lifetimes of 10 ns setting the mass limits upto 1.327 TeV

Our sensitivity drops short lifetimes which we plan to improve on with future studies that target disappearing or displaced

Ismet Siral, CERN

- If the LLP candidate is neutral and when they decay inside the muon or calorimeter system we can have a jet like structure.
 - These can come from the dark-sector.
- In this paper **EXOT-2022-15**, dark-photons (FRVZ model) are searched
 - These dark photons are mixing with the SM hypercharge.
 - The decay of dark photons produces collimated fermions, similar to a jet, called a dark photon jet (DPJs)
 - This search targets dark photons from generated by the Higgs boson decays.

Search for light and neutral LLPs **Analysis Strategy**

In this work these Higgs boson are generated via the VBF process.

Where Higgs decays into dark-fermions lacksquarewhich then decays into dark photon jets.

Other production mechanisms were investigated in EXOT-2019-05 (WH) EXOT-2017-28 (ggF) The analysis tries to identify DPJs in either the ATLAS muon or calorimeter system and categorises the signal region accordingly:

- μ DPJ: Reconstructed from stand-alone tracks in the MS that lies in a fixed-size cone of $\Delta R = 0.4$
- caloDPJ: Reconstructed from energy deposits where with low electromagnetic fraction (EMF<0.4)
 - EMF = E (EM Calorimeter) / E(Total)

EXOT-2022-15

Search for light and neutral LLPs Analysis Strategy

	μDPJ	caloDPJ	
ement / Region	SR_μ	$\mathrm{SR}^{\mathrm{L/H}}_{\mathrm{c}}$	
r of DPJs g DPJ type	≥ 1 μDPJ	≥ 1 caloDPJ	
	$E_{\mathrm{T}}^{\mathrm{miss}}$ Tri-muon MS-only Muon narrow-scan	$E_{\mathrm{T}}^{\mathrm{miss}}$	
[GeV]	> 30	> 30	
V]	≥ 2 ≥ 1000	≥ 2 ≥ 1000	Cuts to select VBF Proce
	> 3 < 2.5	> 3 < 2.5	
	0 0	0 0	$C_{\rm DPJ} = \exp\Big(-\frac{4}{(\eta_{\rm j1} - \eta_{\rm j2})^2}(\eta_{\rm DPJ} - \eta_{\rm j2})^2\Big)$
	> 0.7	- > 0.4	centrality selection for μ between the two VBF jet
GeV]	> 100	SR_{c}^{L} : [100, 225] SR_{c}^{H} : > 225	
J charge— J tagger - <i>n</i> m [GeV]	0 - < 2	- > 0.9 < 2	$\Delta \phi_{\min}$ azimuthal distant between $\overrightarrow{p_T}_{\min}$ and $\overrightarrow{p_T}_i$
.5 PT [CCV]			leading jets

EXOT-2022-15

- The expected BG in the SR is estimated using the ABCD method.
 - and caloDPJ tagger score.

• The BCD regions are defined by changing the isolation, μ DPJ charge

EXOT-2022-15

Search for light and neutral LLPs Unblinded Results

• The expected vs observed events agree within uncertainties.

- No significant excess has been observed.
- New limits are set for the Dark-photon production

-	Selection	CRB	CRC	CRD	SR expected	SR ob
-	SR_μ	44	22	21	42 ± 14	
-	$\mathrm{SR}_{\mathrm{c}}^{\mathrm{L}}$	224	256	1123	983 ± 95	9
_	$\mathrm{SR}^{\mathrm{H}}_{\mathrm{c}}$	9	11	35	29 ± 14	2

EXOT-2022-15

• This search alone excludes wide range of dark-photons with varying masses and life-times

EXOT-2022-15

When combined with other production modes, branching fraction above 10% can be excluded for decay lengths between 173 and 1296 mm for 10 GeV dark photons with the new VBF results

EXOT-2022-15

Ismet Siral, CERN

EXOT-2022-15

Reinterpretation SUSY searches with Tau final states

Ismet Siral, CERN

Reinterpretation SUSY searches with Tau final states Analysis Strategy

The PUB note <u>ATL-PHYS-PUB-2024-007</u> reinterprets the two old results for LLP decays

- 2τ final states: <u>JHEP05(2024)150</u> with hadronically decaying Tau's
- > 4 ℓ final states: <u>JHEP07(2021)167</u> with upto two hadronically decaying Tau's

$$W_{\rm RPV} = \frac{\lambda_{ijk}}{2} L_i L_j \bar{E}_k + \lambda'_{ijk} L_i Q_j \bar{D}_k + \frac{\lambda''_{ijk}}{2} \bar{U}_i \bar{D}_j \bar{D}_k$$

In this reinterpretation we use this general supper potential with a focus on mass-degenerate higgsino pairs and staus

- When λ_{133} and λ_{233} are non-zero results in a non-stable LSP that decays into SM leptons.
- Depending on the choice of RPV couplings and LSP and stau masses the LSP particles:
 - Becomes long-lived and decays beyond the detector momentum resulting in MET signature
 - Decays inside the detector resulting in displaced signatures

 $k + k_i L_i H_u$

ATL-PHYS-PUB-2024-007

Reinterpretation SUSY searches with Tau final states Stau Limits

Stau masses in the range of 180 GeV to 340 GeV are excluded at 95% confidence level for neutralino lifetimes exceeding 10⁻¹ ns

ATL-PHYS-PUB-2024-007

Reinterpretation SUSY searches with Tau final states

Higgsino Limits

The exclusion limits on higgsino masses reach up to 800 GeV in scenarios with lifetimes below 10⁻³ ns.

ATL-PHYS-PUB-2024-007

Where Do We Stand In Other LLP Searches?

Ismet Siral, CERN

Ismet Siral, CERN

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2023-008/

τ [ns]

Conclusion

- As the ATLAS LLP community, we have been working hard to cover variety of LLP signatures.
 - Uncovering each of these signatures comes with unique challenges.
- Today we presented a small subset of these.
- Although we have not discovered any new physics, we are optimistic for Run-3 so stay tuned for new results.

Thank you for listening!

Backups

Displaced Vertices Leptons/Jets

Ismet Siral, CERN

Image by Heather Russell https://hrussell.web.cern.ch/hrussell/images/graphics/LLP_overview.png

Plot taken from: https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2024-003/

SUSY, Neutralino

- them selves as:
 - **Displaced tracks**
- particles
- SUSY models

SUSY dE/dx Analysis Backups

Ismet Siral, CERN

Validation Regions

Ismet Siral, CERN

Selections

٠

	trapezoid parameters, cone angle Θ =22 degrees					
target mass $[GeV]$	lower edge mass $[GeV]$	upper edge mass $[GeV]$				
150	120	210				
200	160	290				
250	210	380				
300	250	490				
350	270	640				
400	320	680				
450	370	700				
500	400	810				
550	470	930				
600	480	1360				
650	530	1360				
700	530	1360				
800	580	1760				
900	710	2610				
1000	820	2380				
1400	860	7000				
1600	950	7000				
1800	950	7000				
2000	1100	7000				
2200	1200	7000				
2400	1200	7000				
2600	1660	7000				

egion	$E_{\rm T}^{\rm miss}$ [GeV]	$dE/dx \ [MeV g^{-1} cm^2]$	β_{ToF}
SR	> 170	> 1.8	$< \beta_{cut}$
n-CR	> 170	< 1.6	< 1.0
γ -CR	< 150	_	< 1.0
β_{ToF} -VR	> 170	> 1.8	$[\beta_{cut}, 1.0]$
-VR kin-CR		< 1.6	$[\beta_{cut}, 1.0]$
$_{\rm F}$ -VR $\beta\gamma$ -CR $ $	< 150	_	$[\beta_{cut}, 1.0]$
lEdx-VR	> 170	[1.05, 1.6]	$< \beta_{cut}$
lx kin-CR	> 170	< 1.05	< 1.0
dx $\beta\gamma$ -CR	< 150	< 1.6	< 1.0

	trapezoid parameters, cone angle Θ =22 degrees				
target mass [GeV]	lower edge mass [GeV]	upper edge mass [GeV]			
700	530	1390			
800	570	2380			
900	620	5340			
1000	720	6170			
1100	780	6170			
1200	860	6170			
1300	950	6170			
1400	960	6170			

Yields

Limits

Dark Photons Backups

Ismet Siral, CERN

Validation regions for Dark photon

Requirement / Region

 $-\mu DPJ$ charge- $\sum_{\Delta R=0.5} p_{\rm T} \, [{\rm GeV}]$

Requirement / Region

caloDPJ QCD tagger score $\sum_{\Delta R=0.5} p_{\rm T} \, [{\rm GeV}]$

CRB_{μ}	CRC_{μ}	CRD_{μ}
[1,5)	[1, 5)	0
[0, 2.0)	[2.0, 20)	[2.0, 20)
$\mathrm{CRB}_\mathrm{c}^\mathrm{L/H}$	$\mathrm{CRC}_{\mathrm{c}}^{\mathrm{L/H}}$	$\mathrm{CRD}_{\mathrm{c}}^{\mathrm{L/H}}$
[0.9, 1]	[0.8, 0.9)	[0.8, 0.9)
[2.0, 20)	[2.0, 20)	[0, 2.0)

Distributions Signal MC

Distributions Data

Systematics

FRVZ model							
$pp \to Hjj(VBF) \to 2\gamma_d + X + jj \text{ process}$							
		$m_{\rm H} =$	125 GeV				
$\gamma_{\rm d}$ mass [GeV]	Channel	Normalisation	Trigger	Muon	Jet	NN taggers	Total
	SR_{μ}	5.3	6.0	9.6	5.8	0.6	13.8
0.017	$\mathrm{SR}_\mathrm{c}^\mathrm{L}$	1.8	4.7	-	2.1	13.6	14.6
	$\mathrm{SR}^\mathrm{H}_\mathrm{c}$	5.0	-	-	12.1	11.2	17.2
	$\overline{SR_{\mu}}$	1.8	6.1	9.6	5.0	0.6	12.6
0.05	$\mathrm{SR}^\mathrm{L}_\mathrm{c}$	2.1	4.6	-	2.6	13.7	14.8
	$\mathrm{SR}^\mathrm{H}_\mathrm{c}$	3.3	-	-	14.6	15.1	21.4
	SR_{μ}	3.2	6.0	9.6	10.8	0.2	15.9
0.1	$\mathrm{SR}^\mathrm{L}_\mathrm{c}$	1.8	4.5	-	4.6	14.9	16.3
	$\mathrm{SR}^\mathrm{H}_\mathrm{c}$	3.2	0	-	14.9	13.8	20.6
	$\overline{SR_{\mu}}$	2.4	6.0	9.6	7.5	0.9	13.8
0.4	$\mathrm{SR}^{\mathrm{L}}_{\mathrm{c}}$	2.7	4.5	-	3.2	14.2	15.5
	$\mathrm{SR}^\mathrm{H}_\mathrm{c}$	2.1	0	-	24.3	12.9	27.6
	$\overline{SR_{\mu}}$	2.0	6.0	9.6	6.0	1.3	13.0
0.9	$\mathrm{SR}^{\mathrm{L}}_{\mathrm{c}}$	2.0	4.4	-	5.2	12.4	14.3
	$\mathrm{SR}^\mathrm{H}_\mathrm{c}$	3.0	0	-	19.3	11.9	22.8
	$\overline{SR_{\mu}}$	2.7	6.0	9.6	6.0	1.6	13.2
2	$\mathrm{SR}^\mathrm{L}_\mathrm{c}$	2.6	4.7	-	4.0	12.8	14.4
	$\mathrm{SR}^\mathrm{H}_\mathrm{c}$	3.7	0	-	13.5	12.5	18.7
	SR_{μ}	2.6	6.0	9.6	6.2	2.8	13.5
6	$\mathrm{SR}^\mathrm{L}_\mathrm{c}$	2.5	3.9	-	3.9	12.5	13.9
	$\mathrm{SR}^\mathrm{H}_\mathrm{c}$	2.0	-	-	15.5	13.9	20.9
	SR_{μ}	1.9	6.0	9.6	4.0	4.0	12.8
10	$\mathrm{SR}^\mathrm{L}_\mathrm{c}$	2.6	4.5	-	9.8	14.5	18.3
	$\mathrm{SR}^\mathrm{H}_\mathrm{c}$	4.5	-	-	21.3	16.9	27.6
	SR_{μ}	4.1	6.0	9.6	11.9	3.6	17.3
15	$\mathrm{SR}^\mathrm{L}_\mathrm{c}$	2.6	3.8	-	11.9	6.7	14.5
	$\mathrm{SR}_{\mathrm{c}}^{\mathrm{H}}$	4.1	-	-	21.2	15.5	26.6

 $c \tau_{\gamma_d}$ [mm]

 $c\tau_{V_d}$ [mm]

 $c\tau_{v}$ [mm]

 $c\tau$. [mm]

Limits

Limits

FRVZ Model $H \rightarrow 2\gamma_{d} + X$ m_H = 125 GeV 90% CL observed limits $ggF/WH/VBF (139 fb^{-1})$ B=10% B=5% B=1% B=0.5% B=0.1%

Prompt (20.3 fb⁻¹) JHEP 02 (2016) 062 B=10%

Monojet (139 fb⁻¹) ATL-PHYS-PUB-2021-020 **– – –** B=50%

Non-ATLAS searches JHEP 06 (2018) 004 Vector-Portal-only limits

Reinterpretation SUSY searches with Tau final states

Ismet Siral, CERN

Distributions of the number of events presenting the two highest- $pT \tau$ had

Signal Models

el	Higgsino model
7/	$ \begin{aligned} \tilde{\chi}_{1}^{\pm} \to qq'(\ell\nu)\tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{\pm} \to qq'(\ell\nu)\tilde{\chi}_{1}^{0}, \ \tilde{\chi}_{1}^{0} \to \ell\tau\nu/\tau\tau\nu \\ \tilde{\chi}_{1}^{\pm} \to \ell\tau\tau/\ell\nu\nu/\tau\nu\nu \end{aligned} $
τν/ττυ	$\begin{split} & \tilde{\chi}_{2}^{0} \to q\bar{q}(\ell\bar{\ell})\tilde{\chi}_{1}^{0} \\ & \tilde{\chi}_{2}^{0} \to q\bar{q}(\ell\bar{\ell})\tilde{\chi}_{1}^{0}, \ \tilde{\chi}_{1}^{0} \to \ell\tau\nu/\tau\tau\nu \end{split}$
	$\tilde{\chi}_2^0 \to \ell \tau \nu / \tau \tau \nu$
eV	$\begin{split} \mathbf{m}(\tilde{\tau}) &= 2 \ \mathrm{TeV} \\ \mathbf{m}(\tilde{\ell}) &= 5 \ \mathrm{TeV} \end{split}$
ge GeV	higgsino-like $\tilde{\chi}_{1}^{0}$ $\Delta m(\tilde{\chi}_{1}^{\pm}, \tilde{\chi}_{1}^{0}) = 0.25 \text{ GeV}$ $\Delta m(\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{0}) = 0.5 \text{ GeV}$

 \frown

2 Tau Signal Selection

Medium τ_{had}	Tight τ_{had}	b-tags	Z/h	$E_{\rm T}^{\rm miss}$ requirement	Representative cuts
$= 2, OS_{1,2}$	≥ 1	veto	veto	$\in [60, \ 150] \ GeV$	$m_{\rm T2} > 80~GeV$
		- veto	veto	> 150 GeV	$m_{\mathrm{T2}} > 85 \ GeV,$
	-			> 100 Gev	$m_{\rm Tsum} > 400 \ GeV$
	≥ 1	veto	veto	$\in [60, \ 150] \ GeV$	$m_{\rm T2} > 70~GeV$
$\geq 2, OS_{1,2}$		voto	veto	> 150 GeV	$m_{\mathrm{T2}} > 85 \ GeV,$
		VCUO	VCUO		$m_{\rm Tsum} > 400 \ GeV$

4 Lepton Signal Selection

Light leptons	Medium τ_{had}	b-tags	Z boson	Representative cuts
	≥ 0	veto	require 2 candidates	$E_{\rm T}^{\rm miss} > 100 \ GeV$
> 1		veto	require 2 candidates	$E_{\rm T}^{\rm miss} > 200 \ GeV$
≥ 4		veto	veto	$m_{\rm eff} > 600~GeV$
		veto	veto	$m_{\rm eff} > 1250 \ GeV$
_ 2	≥ 1	veto	veto	$m_{\rm eff} > 600~GeV$
= 3		veto	veto	$m_{\rm eff} > 1000 \ GeV$
- 2	≥ 2	veto	veto	$m_{\rm eff} > 600~GeV$
<i></i>		veto	veto	$m_{\rm eff} > 1000~GeV$

