12th Edition of the Large Hadron Collider Physics Conference (LHCP2024) June3-7, 2024

Recent results on long-lived particles searches with hadronic final states

Haberle Raphael on behalf of the CMS Collaboration

7th June 2024

Introduction

- Lots of **Beyond the Standard Model** (BSM) searches are conducted in CMS Many extension to the SM predict the existence of Long-lived particles with
 - various experimental signatures

Focus on **long-lived particles** with hadronic final states

- Displaced jets (unique result from CMS !) : link
- Emerging jets : link
- Heavy stable charged particles ($c\tau > 7m$) : link

Search for displaced jets at 13.6TeV (2022 data)

EXO-23-013

March 2024

Search for LLP using displaced jets - Overview

Overview : Unique result from CMS

Displaced jet signature

• Look for hadronic decays of long-lived particles inside the inner tracking system

• Focus on low-mass (< 60 GeV) decaying LLPs :

unconstrained phase space

Main physics motivation

> Higgs-portal hidden sectors

Also sensitive to many other BSM models

>Split SUSY, gauge-mediated SUSY, RPV SUSY, stealth SUSY, HNLs, axions/ALPs,...

Benchmark signature • Exotic decay of Higgs boson to 2 long-lived neutral scalars S, further decaying to 2 SM fermions • Focus on hadronic final states : bb, $dd_{,\tau\tau}$ Η SM S Considered signal points $H \rightarrow SS, S \rightarrow bb/dd/\tau\tau$ m_s = 15,23,30,40,55 GeV (S in an LLP) $c\tau = 1 - 1000 \text{ mm}$

Search for LLP using displaced jets - Categories & S/B modelling

New techniques developed for this search

- New displaced-jet triggers
- New displaced vertex reconstruction
- New graph-neural-network (GNN) based LLP taggers
 - GNN_d : presence of displaced activities during LLP decay
 - GNN_p : lack of prompt activities during LLP production

Event selection :

- Dijet with at least 1 DV
 Select dijet with largest g_{prompt}

Background estimation

- Small correlation between both taggers, allows for **ABCD** background estimation with simultaneous fit
- ABCD regions based on both GNN scores

Search for LLP using displaced jets - Results

First-ever displaced hadronic tau results with decay lengths smaller than ≈ 1 m

Search for LLP using displaced jets - Results

Interpreted with two models in the neutral naturalness scenario Exclusions placed in the theory phase space : first time from any experiment

Scalar S interpreted as the lowest-mass glueball in the hidden sector Exclusion placed in the plane of the glue ball mass and top partner mass of hidden sector

• Expect a significant expansion of coverage with full Run-3

→ Factor of 10 better results

- More new techniques will be developed to further improve sensitivity
- New applications to other LLP signatures can be pursued
- Will benefit significantly from the HL-LHC upgrades !

Search for emerging jets at 13 TeV (full Run 2)

EXO-22-015

February 2024

Search for emerging jets - Overview

Overview : Dark QCD search

Emerging jet signature

- Coupling SM dark sector via dark mediator X_{dark}
- Dark confinement energy at GeV scale
- Unstable dark pions (π_{dark}) decay to SM particles
- $m_{\chi}, m_{\pi_{dark}}, c \tau_{\pi_{dark}}$ free parameters scanned
 - m_{x} : [1, 2.5] TeV
 - $m_{\pi_{dark}}$: [6, 20] GeV
 - $C au_{\pi_{dark}}$: [1, 1000] mm

X_{dark} -> qQ_{dark} coupling allowed

Unflavored scenario : Q_{dark} couples to down quark ONLY **Flavor-aligned scenario** : Q_{dark} couples to d/s/b quarks

Paper reference

Search for emerging jets - Categories & S/B modelling

Event selection

 \bigcirc H_T, p_T of 4 leading jets, \ge 2 EMJ-tagged jets criteria

Model-agnostic EMJ tagging :

Jet-level variables cuts to select EMJ, less sensitive to parameter space chosen for study

GNN EMJ tagging :

Based on ParticleNet, 2 GNN trained : unflavored / flavor-aligned scenarios

Background estimation

• Fully data-driven estimation

 $\begin{array}{l} \textbf{CR}: \text{JetHT trigger}, N_{EMJ}^{tagged} = 1\\ \textbf{SR}: \text{JetHT trigger}, N_{EMJ}^{tagged} \geq 2 \end{array}$ **FR** : γ -triggered

• Use events in CR with mistag rates (ϵ) from FR to estimate # of bkg events in **SR**

Mistag rate calculations

- suppressed" (FR_E/FR_S) regions

Haberle Raphael

cτ^{max} [mm]

Search for emerging jets - Results

No significant excess observed

Upper limits set on each EMJ model using the CLs criterion :

• Exclude $m_{X_{dark}}$ up to **1850 GeV** for **flavored**aligned models for $m_{\pi_{dark}}$ ~ 10 GeV

Better limits with GNN than modelgeneric method, especially at low lifetimes :

• GNN better distinguishes more prompt-like EMJ from background

Search for emerging jets - Results

Extended $c\tau_{\pi_{dark}}$ coverage using <u>muon system</u>

Search for heavy stable charged particles (HSCP) at 13 TeV (2017+2018 data from Run 2)

EXO-18-002

March 2024

Search for HSCP - Overview

Overview

Several BSM models

GMSB, split-SUSY, fourth-generation lepton

- Lepton-like HSCP : $\tilde{\tau}, \tau'^{(1e)}, \tau'^{(2e)}$ [New Z' model !]
- Strongly interacting HSCP : R-hadrons from \tilde{g} or \tilde{t}

Experimental signature

• Isolated track of high p_T (> 55 GeV), with large dE/dx in the tracker barrel

Search for HSCP - Categories & S/B modelling

Two different methods, both background estimation are fully data-driven

 Validations performed in data

Single search region for all hypothesis in ionisation method :

Expected : 0.4 | Observed : 1

No significant excess observed in data in **both methods**

07/06/2024

Haberle Raphael

Search for HSCP - Results

Interpretation of the results for various HSCP models using CLs criterion

Model	Obs. limit (TeV)	Previous limit (TeV)
$ ilde{g}$	2.13	1.61
ĩ	1.52	1.04
GMSB $ ilde{ au}$	0.85	0.49
pair – prod . $\tilde{\tau}_R$	0.52	_
pair – prod . $\tilde{\tau}_L$	0.64	
pair – prod . $\tilde{\tau}_{L/R}$	0.69	0.24
$\tau' (Q = 1e)$	1.20	0.51
$\tau' (Q = 2e)$	1.47	0.68
$Z'_{\psi} ightarrow au' au'$	4.22	
$Z'_{SSM} ightarrow au' au'$	4.76	

07/06/2024

Haberle Raphael

Search for HSCP - Results

go

Motivated by ATLAS excess (JHEP 06 (2023) 158)

•ATLAS excess -> compatible with hypothesis of 1.4 TeV pair-produced gluino : excluded by this result

Haberle Raphael

Conclusion

• If no significant excess observed, limits are given for several BSM models

Low-mass LLP using displaced jets

With only 2022 data analysed :

- Surpass the full Run-2 ATLAS results by up to an order of magnitude and the HL-LHC projection of LHCb
- First ever displaced hadronic tau results

Search for heavy stable charged particles

- Interpretation on a wide range of models and answer to ATLAS excess
- Significant improvements w.r.t previous CMS publication (ref)

07/06/2024

Search for emerging jets

UL Run 2 data analysed :

- Push back previous limits for unflavored $m_{\pi_{dark}} = 10 \text{ GeV} (EXO-18-001)$
- Set limits for **new EMJ models** :
 - Exclude $m_{X_{dark}}$ up to 1950 (1800) for aligned (unflavored) models

- These results are a small fraction of the longlived searches conducted by **CMS**
 - The full Run-3 data will bring exciting new results, we are all looking forward to it !

Search for displaced jets at 13.6TeV (2022 data)

EXO-23-013

BACKUP

EXO-23-013 - New techniques developed

• New displaced-jet triggers

<u>L1HTT (main) :</u>

- HLT H_T > 430 GeV matched with offline $H_T > 450 \text{ GeV}$
- ≥ 2 online CALO jets

<u>L1Mu6HTT240 (auxiliary)</u>:

- HLT H_T > 250 GeV matched with offline $H_T > 240 \text{ GeV}$
- Muon (p_T > 6 GeV)
- ≥ 2 online CALO jets (p_T > 40 GeV, |η| < 2.0)

Compared to the Run-2 algorithm, the main difference is the reconstruction of the additional DVs within the dijet, which is crucial for the improvements of sensitivities to S -> bb decays

New displaced vertex reconstruction

Starting with the displaced tracks ($IP_{2D} > 0.5 \text{ mm}$, $Sig[IP_{2D}] > 5.0$) associated with two jets

Expectations for full Run-3 data :

• Expect to achieve a factor of 10 better results

Direction of new developments

Low m_0 (~<30 GeV) and high m_T (~>600 GeV)

- Boosted (merged) displaced jet tagging
- Complementarities provided by other sub detectors (CALO and muon detector)

High m_0 (~>40 GeV) and low m_T (~<550 GeV)

- New track classification, clustering and DV reconstruction algorithms
- Search for a pair of LLPS

EXO-23-013 - Future prospectives

Many projections for future collider experiments

• We are getting close to these projections even with only the first year of Run-3 data

Example : LHCb HL-LHC projection [arXiv:2105.12668]

Example : Recent studies for CLIC [JHEP 03(2023)131]

EXO-23-013

EXO-23-013 - Comparison with previous searches

1. Full Run-2 displaced-jets search (EXO-19-021) 2. Run-2 Z+displaced-jets search (EXO-20-003) 3. ATLAS full Run-2 DV search

Orders-of-magnitude improvements compared to previous results, significant expansion of the probed phase space

Search for emerging jets at 13 TeV (full Run 2)

BACKUP

Haberle Raphael

07/06/2024

GNN : Mistag rate calculations

• Mistag and b-jet fraction B^{CR} from "benhanced/suppressed" (FR_E/FR_S) regions

2 equations, 2 unknowns : solve for ϵ (b/l,p_T)

$$(1 - B^{E})\epsilon(l, p_{T})$$

$$(1 - B^{S})\epsilon(l, p_{T})$$

$$\sigma_{opt} = \frac{S}{\sqrt{S + B + \beta^2 B^2}}$$

 Optimisation 	on for each signal model	: best threshold H _T , jet		Selection set	Estimation ^{+<i>stat</i>} \pm syst.	
p_T and EJ tagging by maximising σ_{opt}				u-set 1	56^{+9}_{-5} ± 20	
$\sigma_{opt} = \frac{S}{\sqrt{S + B + \beta^2 B^2}}$			Model-	u-set 2	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
			unflavored	u-set 3	$22.9_{-2.1}^{\pm} \pm 4.9$ $7.9_{-2.0}^{\pm} \pm 2.2$	
				u-set 5	$11.3^{+2.7}_{-1.9} \pm 2.0$	
β : estimated background uncertainty taken as 10%				a-set 1	$88^{+2.4}$ + 20	
			Model-	a-set 2	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
			agnostic	a-set 3	$1.97 \stackrel{-0.23}{_{-0.22}} \pm 0.37$	
Signal selection efficiency		flavored	a-set 4	$2.30^{+0.81}_{-0.30} \pm 0.39$		
				a-set 5	$10.2_{-1.1}^{+2.5} \pm 3.4$	
π _{dark} litetime	Model-agnostic tagger	ML-based tagger		uGNN set 1	$156^{+5.4}$ + 38	
			GNN	uGNN set 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
40 mm	40%	60%	unflavored	uGNN set 3	$7.6^{+3.5}_{-1.3}$ ± 2.3	
				aGNN set 1	45^{+18}_{-8} ± 16	
~ 1000 mm	few %	few %	GNN	aGNN set 2	$0.30^{+0.23}_{-0.07} \pm 0.18$	
~1mm			navoreu	aGNN set 3	$3.8^{+2.2}_{-0.7}$ ± 2.0	

Haberle Raphael

Results in each model set

Search for heavy stable charged particles (HSCP) at 13 TeV (2017+2018 data from Run 2)

EXO-18-002

BACKUP

Search for HSCP - Overview

Haberle Raphael

• Target massive particles

Link to plot

 Increase m for a fixed p leads to lower $\beta\gamma$, in turn leading to higher dE/dx

- We are looking for massive particles with m ~ 2 TeV and **β**γ ~ **0.5**
 - Find them below MIP, with higher ionization

EXO-18-002 - ATLAS excess

3σ excess reported (expected 0.7, observed 7), with SM compatible v/c :

- Majority of them compatible with muons
- We at CMS are able to provide an answer for this observation

Excess compatible with 1.4 TeV pair-produced gluino hypothesis

EXO-18-002 - Comparison with previous publication

Both methods results comparison with previous CMS publication

Model	Ionization	n method	Mass n	nethod	Last CMS result	
	Exp. (TeV)	Obs. (TeV)	Exp. (TeV)	Obs. (TeV)	Obs. (TeV)	
gluino	2.08 ± 0.09	2.03	2.13 ± 0.11	2.13	1.61	
stop	1.45 ± 0.08	1.40	1.51 ± 0.10	1.52	1.04	
GMSB tau slepton	0.88 ± 0.07	0.84	0.87 ± 0.09	0.85	0.49	Provious (
Pair-prod. RR tau slepton	0.55 ± 0.07	0.52	0.52 ± 0.07	0.51	_	
Pair-prod. LL tau slepton	0.68 ± 0.08	0.64	0.68 ± 0.10	0.61	_	publicati
Pair-prod. L/R tau slepton	0.73 ± 0.08	0.69	0.75 ± 0.10	0.64	0.24	here
$\tau' \ (Q = 1e)$ from DY prod.	1.06 ± 0.10	1.02	1.18 ± 0.12	1.20	0.51	
$\tau' \ (Q = 2e)$ from DY prod.	1.68 ± 0.11	1.62	1.46 ± 0.13	1.47	0.68	
$Z'_\psi o au' au'$	4.01 ± 0.27	3.88	4.20 ± 0.29	4.22	_	
$Z_{SSM}^{\prime} ightarrow au^{\prime} au^{\prime}$	4.56 ± 0.28	4.41	4.75 ± 0.28	4.76	_	

