# **Recent Results on Long-Lived Particles with** (Semi)Leptonic Final States in CMS

Anna Mascellani On behalf of the CMS collaboration



### LHCP2024 Conference, Boston

7<sup>th</sup> June 2024





- Long-lived particles (LLPs) produced at the LHC travel a macroscopic distance before decaying
  - Unique experimental signature, ideal as a **probe for new physics**
  - Several experimental challenges: trigger, event reconstruction, background estimation,...
- LLPs are predicted by many extensions of the SM

Neutrino sector Neutrino minimal SM, ...

Hidden Sector Hidden Abelian Higgs, Dark showers, ...

- Different approaches: model-dependent and inclusive searches





### Context



SUSY sector R-parity violating SUSY, ...

• Different types of particles in the final state: both hadronic and leptonic signatures in the CMS detector



## Context

- Long-lived particles (LLPs) produced at the LHC travel a macroscopic distance before decaying
  - Unique experimental signature, ideal as a probe for new physics
  - Several experimental challenges: trigger, event reconstruction, background estimation,...
- LLPs are predicted by many extensions of the SM

Neutrino sector Neutrino minimal SM, ...

Hidden Sector SUSY sector Hidden Abelian Higgs, Dark showers, ... R-parity violating SUSY, ... • Different types of particles in the final state: both hadronic and leptonic signatures in the CMS detector See the **talk from <u>R. Haberle</u>** for an overview of LLP searches with • Overview of (semi)leptonic LLP searches (at least one lepton from the LLP decay) hadronic final states

- Different approaches: model-dependent and inclusive searches

### In this talk:

- Focus on inclusive approaches







# LL HNLs with Semileptonic Final States

Model-dependent analyses: Heavy Neutral Lepton (HNL) Searches

- Target: **long-lived HNLs** decaying semileptonically
- Displaced signature gives access to low HNL mass and low coupling values
- In most cases, rely on the **prompt lepton** for **triggering**

<u>[CMS-PAS-EXO-21-011]</u> [JHEP03(2024)105]

• 1 displaced lepton +  $\geq$ 1 jet



Cluster of hits in the muon system







See the **talk from L. Lunerti** for an overview of HNL searches

### <u>[arXiv:2403.04584v1]</u>

- HNL from a B-meson decay
- | displaced lepton + 1 displaced pion













### Model-independent analyses

- Signature-based searches: displaced objects
- Give access to a **wide range of BSM scenarios**
- Require dedicated triggers







### Model-independent analyses

- Signature-based searches: displaced objects
- Give access to a **wide range of BSM scenarios**
- Require dedicated triggers

[arXiv:2402.01898] Search for long-lived particles decaying in the CMS muon detectors in proton-proton collisions at  $\sqrt{s} = 13$  TeV

Signature: particle showers in the muon detectors not associated to inner tracks











### Model-independent analyses

- Signature-based searches: displaced objects
- Give access to a **wide range of BSM scenarios**
- Require dedicated triggers

[arXiv:2402.01898] Search for long-lived particles decaying in the CMS muon detectors in proton-proton collisions at  $\sqrt{s} = 13$  TeV

Signature: particle showers in the muon detectors not associated to inner tracks

### <u>[JHEP05(2024)047]</u>

Search for long-lived particles decaying to final states with a pair of muons in proton-proton collisions at  $\sqrt{s} = 13.6$  TeV

 Signature: pair of oppositely-charged muons originated from a displaced common vertex (CV)











### Model-independent analyses

- Signature-based searches: displaced objects
- Give access to a **wide range of BSM scenarios**
- Require dedicated triggers

[arXiv:2402.01898] Search for long-lived particles decaying in the CMS muon detectors in proton-proton collisions at  $\sqrt{s} = 13$  TeV

Signature: particle showers in the muon detectors not associated to inner tracks

### <u>[JHEP05(2024)047]</u>

Search for long-lived particles decaying to final states with a pair of muons in proton-proton collisions at  $\sqrt{s} = 13.6$  TeV

 Signature: pair of oppositely-charged muons originated from a displaced common vertex (CV)







Focus of the rest of this talk





# LLPs Decaying in the Muon Detectors

- Inclusive search of LLPs using the **muon system** as a **sampling calorimeter** 
  - Sensitive to a **broad range of decays**: quarks, taus, photons, electrons,...
- Signature:
  - Large cluster of hits in the muon system (Muon Detector Shower) not associated to jets or tracks
  - Missing transverse momentum
- High **background suppression** thanks to the shielding material
- Results interpreted for two signal models
  - Twin Higgs scenario:  $H \rightarrow SS$
  - Dark shower models:  $H \rightarrow \Psi \overline{\Psi}$



arXiv:2402.01898







→ Neutral long-lived scalar decaying to a pair of fermions or photons

> Dark-sector quark hadronising into a dark <u>shower</u>



# LLPs Decaying in the Muon Detectors: Strategy

- Run 2 analysis: 138 fb<sup>-1</sup> of data collected between 2016 and 2018
- Selection of events with high missing transverse momentum:  $p_T^{miss} > 200 \text{ GeV}$  (Trigger:  $p_T^{miss} > 120 \text{ GeV}$ ) • Hits in high-intensity regions grouped into clusters separately in barrel (DT) and endcap (CSC) detectors
- - $\circ$  N<sub>hits</sub> > 50 for clustering to reject minimum-ionising muons





- Categories based on the number of clusters and their location:
  - Single DT cluster
  - Single CSC cluster
  - Double cluster: DT-DT, DT-CSC, CSC-CSC
- Signal region definition and background estimation separately optimised for each category













isolated hadrons (pileup, recoils, underlying events)





• Main backgrounds: punch-through jets (jets "surviving" up to the muon system), bremsstrahlung muons,



isolated hadrons (pileup, recoils, underlying events)





• Main backgrounds: punch-through jets (jets "surviving" up to the muon system), bremsstrahlung muons,

Suppressed by vetoing-out nearby jets and muons



- isolated hadrons (pileup, recoils, underlying events)
- Main **discriminating variables** 
  - $\circ$  Number of hits in the cluster  $N_{hits}$



between  $\vec{p}_{T}^{miss}$  and the cluster position

LHCP2024





- isolated hadrons (pileup, recoils, underlying events)
- Main **discriminating variables** 
  - Number of hits in the cluster N<sub>hits</sub>



between  $\vec{p}_{T}^{miss}$  and the cluster position

LHCP2024

![](_page_13_Picture_8.jpeg)

![](_page_13_Picture_11.jpeg)

# LLPs Decaying in the Muon Detectors: Results

- No significant excess over the SM observed
- Results interpreted in terms of the two benchmark models

![](_page_14_Picture_4.jpeg)

![](_page_14_Figure_5.jpeg)

![](_page_14_Figure_7.jpeg)

![](_page_14_Figure_8.jpeg)

![](_page_14_Picture_9.jpeg)

# LLPs Decaying in the Muon Detectors: Results

No significant excess over the SM observed

LHCP2024

- Results interpreted in terms of the two benchmark models
- Most stringent limits on the twin-Higgs model to date in the low mass regime ( $m_S \lesssim 10$  GeV)

![](_page_15_Figure_4.jpeg)

![](_page_15_Picture_5.jpeg)

![](_page_15_Picture_6.jpeg)

![](_page_15_Picture_10.jpeg)

- No significant excess over the SM observed
- Results interpreted in terms of the two benchmark models
- Most stringent limits on the twin-Higgs model to date in the low mass regime ( $m_S \lesssim 10$  GeV)
- First LHC limits set on the dark-shower model

LHCP2024

![](_page_16_Figure_5.jpeg)

![](_page_16_Picture_6.jpeg)

![](_page_16_Figure_8.jpeg)

![](_page_16_Figure_9.jpeg)

![](_page_16_Figure_10.jpeg)

![](_page_16_Picture_11.jpeg)

## LLPs to Muon Pairs

- Inclusive search for long-lived particles decaying into pairs of oppositely-charged muons (displaced dimuons)
- Results benchmarked for two BSM models
  - R-parity violating SUSY model ( $\tilde{q} \rightarrow q \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow \mu \mu \nu$ )
  - Dark photon model (H  $\rightarrow Z_D Z_D, Z_D \rightarrow \mu\mu$ )
- Early Run 3 search
  - With **36.7 fb**<sup>-1</sup> of data collected in 2022 at  $\sqrt{s} = 13.6$  TeV
  - Following the strategy of a similar search in Run 2 [JHEP05(2023)228]
  - Comparable or better sensitivity than Run 2 obtained with only 38% of the data

![](_page_17_Picture_10.jpeg)

![](_page_17_Picture_13.jpeg)

![](_page_17_Figure_14.jpeg)

Improved signal efficiency thanks to new trigger developments

![](_page_17_Figure_17.jpeg)

![](_page_17_Picture_18.jpeg)

# **Double-muon Trigger Improvements in 2022**

Improved LLP triggers at both L1 (hardware) and HLT (software)

- New **L1** algorithms:
  - $\circ$  Double-muon triggers with lower  $p_T$  thresholds
  - p<sub>T</sub> reconstruction without beam-spot constraint
- New HLT algorithms: higher thresholds on the impact parameter to allow lower p<sub>T</sub> thresholds

![](_page_18_Figure_6.jpeg)

![](_page_18_Picture_7.jpeg)

![](_page_18_Figure_12.jpeg)

![](_page_18_Picture_13.jpeg)

![](_page_18_Picture_14.jpeg)

## LLPs to Muon Pairs: Strategy

- Two types of muon reconstruction in CMS:
  - STA: Displaced STand-Alone (muon system only)
  - TMS: Tracker + Muon System (better track, vertex and mass resolution) 0
- Two dimuon categories: TMS-TMS and STA-STA allow to cover a high range of displacements beyond the tracker
- Dimuons fitted to a common vertex

![](_page_19_Picture_8.jpeg)

![](_page_19_Figure_12.jpeg)

![](_page_19_Figure_13.jpeg)

![](_page_19_Picture_14.jpeg)

## LLPs to Muon Pairs: Strategy

- Two types of muon reconstruction in CMS:
  - STA: Displaced STand-Alone (muon system only)
  - TMS: Tracker + Muon System (better track, vertex and mass resolution)
- Two **dimuon categories**: TMS-TMS and STA-STA allow to cover a high range of displacements beyond the tracker
- Dimuons fitted to a common vertex

### Main discriminating variables

- Transverse decay length ( $L_{xv}$ ) and its significance ( $L_{xy} / \sigma_{L_{xy}}$ )
- Transverse impact parameter  $(d_0)$ and its significance  $(d_0/\sigma_{d_0})$
- Transverse collinearity ( $|\Delta \phi|$ )  $\rightarrow$  Small for signal

![](_page_20_Picture_10.jpeg)

![](_page_20_Picture_12.jpeg)

![](_page_20_Figure_14.jpeg)

![](_page_20_Figure_15.jpeg)

![](_page_20_Picture_17.jpeg)

## LLPs to a Muon Pairs: Strategy

Background due to instrumentation/reconstruction mistakes ——> Data-driven estimation

- QCD-like: low mass resonances, cascade decays (e.g. from B hadrons)
- Drell-Yan-like : (misreconstructed) prompt dimuons from Drell-Yan, tt and dibosons

### Search regions:

- Separate  $m_{\mu\mu}$  interval for each mass hypothesis
- Binning in  $d_0/\sigma_{d_0}$  in the **TMS-TMS** category

![](_page_21_Figure_7.jpeg)

Observed data consistent with SM predictions in all search regions

![](_page_21_Picture_9.jpeg)

![](_page_21_Picture_10.jpeg)

![](_page_21_Figure_11.jpeg)

![](_page_21_Figure_12.jpeg)

![](_page_21_Figure_14.jpeg)

![](_page_21_Picture_15.jpeg)

## LLPs to Muon Pairs: Results

- Results interpreted in terms of the two benchmark models
- (Partial) Run 3 results competitive or better (at high displacement) than Run 2

![](_page_22_Figure_4.jpeg)

![](_page_22_Picture_8.jpeg)

![](_page_22_Figure_11.jpeg)

![](_page_22_Picture_19.jpeg)

- Inclusive searches of LLP give access to a broad range of new physics models
- The presented results improve existing limits in wide regions of the parameter space for different BSM scenarios
- Large ongoing effort in CMS to improve LLP searches
  - Trigger developments
  - Reconstruction of Long-lived objects
  - Innovative (data-driven) background estimation methods 0
  - 0 • • •
- First CMS Run 3 results are competitive with Run 2 ones with only a fraction of the collected data

![](_page_23_Picture_9.jpeg)

![](_page_23_Picture_10.jpeg)

![](_page_23_Picture_11.jpeg)

![](_page_23_Picture_12.jpeg)

### Anna Mascellani

14

- Inclusive searches of LLP give access to a broad range of new physics models
- The presented results improve existing limits in wide regions of the parameter space for different BSM scenarios
- Large ongoing effort in CMS to improve LLP searches
  - Trigger developments
  - Reconstruction of Long-lived objects
  - Innovative (data-driven) background estimation methods 0
  - 0 • • •
- First CMS Run 3 results are competitive with Run 2 ones with only a fraction of the collected data

![](_page_24_Picture_11.jpeg)

![](_page_24_Picture_12.jpeg)

![](_page_24_Picture_13.jpeg)

The future for LLP searches at CMS looks promising and many more (Run 3) results are on the way... Stay tuned!

Anna Mascellani

### 14

# Backup

![](_page_25_Picture_1.jpeg)

![](_page_25_Picture_2.jpeg)

![](_page_25_Picture_4.jpeg)

![](_page_25_Picture_5.jpeg)

# LLPs decaying to a pair of muons: Backgrounds

No genuine LLPs with  $m_{\mu\mu} > 10 \text{ GeV}$  in the SM → backgrounds are due to instrumentation/reconstruction mistakes

 $|\Delta \phi|$  - asymmetric (QCD)

- \_ow mass resonances
- Cascade decays (e.g. from B hadrons)

![](_page_26_Figure_5.jpeg)

Estimated in data control regions with Same-Sign (SS) muons and non-isolated muons

- (DY),  $t\bar{t}$  and dibosons
- Cosmic rays, ...

![](_page_26_Figure_10.jpeg)

### LHCP2024

![](_page_26_Picture_13.jpeg)

![](_page_26_Figure_14.jpeg)

![](_page_26_Picture_16.jpeg)