

The CMS Precision Proton Spectrometer at the HL-LHC

Enrico Robutti (INFN Genova) on behalf of the CMS Collaboration

Istituto Nazionale di Fisica Nucleare

Typical hard scattering event at LHC:

07/06/2024

E. Robutti - The CMS Precision Proton Spectrometer at the HLLHC — LHCP 2024

Events with intact protons

Typical hard scattering event at LHC:

One or both protons may remain intact in the interaction

Events with intact protons

Typical hard scattering event at LHC:

One or both protons may remain intact in the interaction

- Intact protons interact via QCD (pomerons) or QED (photons) color singlet exchange
- Energy lost by protons goes into the creation of particles in the central rapidity region
- Reduced track activity in the central detector
- Scattered protons travel along the beam pipe and can be traced by dedicated near-beam detectors

Events with intact protons

Tagging intact protons after the interaction allows the study of very rare processes

- proton kinematics characterised by fractional momentum loss, $\xi = (|p_i| |p_f|)/|p_i|$
- kinematic closure of the whole event by match with reconstructed central system $\begin{cases}
 m_X = \sqrt{s\xi_1\xi_2} \\
 y_X = \frac{1}{2}\ln(\frac{\xi_1}{\xi_2})
 \end{cases}$

Physics opportunities

- In particular, detecting both protons allows to study Central Exclusive Production (CEP)

Tagging intact protons after the interaction allows the study of very rare processes

- proton kinematics characterised by fractional momentum loss, $\xi = (|p_i| |p_f|)/|p_i|$
- kinematic closure of the whole event by match with reconstructed central system

LHC can be used as a *yy* collider:

- anomalous gauge couplings in $\gamma\gamma \rightarrow W^+W^-$
- direct search for DM via resonances in $\gamma\gamma \rightarrow \chi$
- direct search for new particles (BSM), via remances (e.g. $t\bar{t}$) or with missing mass techniques

Physics opportunities

- In particular, detecting both protons allows to study Central Exclusive Production (CEP)

Tagging intact protons after the interaction allows the study of very rare processes

- proton kinematics characterised by fractional momentum loss, $\xi = (|p_i| |p_f|)/|p_i|$
- kinematic closure of the whole event by match with reconstructed central system

LHC can be used as a *yy* collider:

- anomalous gauge couplings in $\gamma\gamma \rightarrow W^+W^-$
- direct search for DM via resonances in $\gamma\gamma \rightarrow \delta X_{\infty}$
- direct search for new particles (BSM), via remances (e.g. $t\bar{t}$) or with missing mass techniques

QCD physics: most dijet events from $gg \rightarrow gg \Rightarrow gluon$ jet factory

Physics opportunities

- In particular, detecting both protons allows to study Central Exclusive Production (CEP)

p

The CMS Precision Proton Spectrometer

The CMS Precision Proton Spectrometer (PPS), originally conceived as a joint CMS-TOTEM project, is designed to detect intact protons after the interaction, in standard LHC running conditions

- tracking and timing detectors located along the LHC beam line, at $\pm \sim 200$ m from the CMS interaction point
- detectors hosted in horizontal roman pots, allowing sensor approach to the beam (in the LHC plane) down to few mm

PPS in Run 2 and Run 3

Various detector configurations starting from 2016:

- two tracking stations per arm; silicon strips, then replaced by 3D silicon pixels; • one timing station per arm, two from 2023; CVD diamond sensors;
- major update to all detectors for Run 3

PPS in Run 2 and Run 3

Various detector configurations starting from 2016:

- two tracking stations per arm; silicon strips, then replaced by 3D silicon pixels; • one timing station per arm, two from 2023; CVD diamond sensors;

- Detectors operational for most part of Run 2 and

E. Robutti - The CMS Precision Proton Spectrometer at the HLLHC — LHCP 2024

Proton reconstruction

Proton kinematics obtained from reconstructed tracks in PPS

• Standard reconstruction: multi-RP tracks (tracks in 2 stations)

E. Robutti - The CMS Precision Proton Spectrometer at the HLLHC — LHCP 2024

Proton reconstruction

Proton kinematics obtained from reconstructed tracks in PPS

• Standard reconstruction: multi-RP tracks (tracks in 2 stations)

Kinematics at the IP using LHC optics transport matrix

$$x = D_x(\xi) \cdot \xi + L_x(\xi) \cdot \theta_x^*$$

Main terms:

$$y = D_{y}(\xi) \cdot \xi + L_{y}(\xi) \cdot \theta_{y}^{*} + v_{y}(\xi) \cdot y^{*}$$

 Optics parameters depend on LHC running conditions; in particular from β^* and beam crossing angle α_X

Proton reconstruction

Proton kinematics obtained from reconstructed tracks in PPS

• Standard reconstruction: multi-RP tracks (tracks in 2 stations)

Kinematics at the IP using LHC optics transport matrix

$$x = D_x(\xi) \cdot \xi + L_x(\xi) \cdot \theta_x^*$$

Main terms:

$$y = D_{y}(\xi) \cdot \xi + L_{y}(\xi) \cdot \theta_{y}^{*} + v_{y}(\xi) \cdot y^{*}$$

 Optics parameters depend on LHC running conditions; in particular from β^* and beam crossing angle α_X

Precision timing helps to fight background from pileup (uncorrelated protons from other interactions in the same bunch crossing)

Physics results from Run 2

Observation of proton-tagged, central (semi)exclusive production of high-mass lepton pairs

Search for high-mass exclusive $\gamma\gamma \rightarrow WW$ and $\gamma\gamma \rightarrow ZZ$ production

Search for new physics in central exclusive production using the missing mass technique in $pp \rightarrow p(Z,\gamma) X p$

Search for high-mass exclusive diphoton production with tagged protons Phys. Rev. Lett. 129 (2022) 011801

Search for central exclusive production of top quark pairs with tagged protons

E. Robutti - The CMS Precision Proton Spectrometer at the HLLHC — LHCP 2024

Extension of the PPS program in HL-LHC would significantly improve physics reach: More integrated luminosity

- Results from Run 2 and Run 3 limited by statistical uncertainties Broader m_X ($\sqrt{s_{yy}}$) range
- Current acceptance in the range $\sim 350 \text{ GeV} 2 \text{ TeV}$ (when both protons detected)
- In HL-LHC configuration, upper limit up to ~ 4 TeV (with horizontal beam crossing), lower limit down to ~200 GeV (with vertical beam crossing)

PPS at the HL-LHC

Extension of the PPS program in HL-LHC would significantly improve physics reach: More integrated luminosity

- Results from Run 2 and Run 3 limited by statistical uncertainties Broader m_X ($\sqrt{s_{yy}}$) range
- Current acceptance in the range $\sim 350 \text{ GeV} 2 \text{ TeV}$ (when both protons detected)
- In HL-LHC configuration, upper limit up to ~4 TeV (with horizontal beam crossing), lower limit down to ~200 GeV (with vertical beam crossing)

Expression of interest submitted in 2021

• proposal subsequently rescoped to re-use existing roman pot mechanics and to consider only "warm" locations ("cold" location at 420 m much more technically challenging)

PPS at the HL-LHC

arXiv:2103.02752

Extension of the PPS program in HL-LHC would significantly improve physics reach: More integrated luminosity

- Results from Run 2 and Run 3 limited by statistical uncertainties Broader m_X ($\sqrt{s_{yy}}$) range
- Current acceptance in the range $\sim 350 \text{ GeV} 2 \text{ TeV}$ (when both protons detected)
- In HL-LHC configuration, upper limit up to ~ 4 TeV (with horizontal beam crossing), lower limit down to ~200 GeV (with vertical beam crossing)

Expression of interest submitted in 2021

• proposal subsequently rescoped to re-use existing roman pot mechanics and to consider only "warm" locations ("cold" location at 420 m much more technically challenging)

Proposal approved by CERN Research Board in September 2023

• PPS2 included in HL-LHC baseline; design of detector vessels and detector units started

PPS at the HL-LHC

arXiv:2103.02752

Process	Fiducial cross	section [fb]
	$2 \mathbf{tags}$	$1 \mathrm{tag}$
jj	2	219
bb	0.04	6.3
W^+W^-	15	152
$\mu\mu$	1.3	172
$\mathbf{t}\mathbf{t}$	0.1	0.65
Η	0	0.23
HW^+W^-	0.01	0.06
ZZ	0.03	0.23
$\mathrm{Z}\gamma$	0.02	0.15
$\gamma\gamma$	0.003	0.19

SM cross sections for CEP processes

PPS2 physics reach: low mass

E. Robutti - The CMS Precision Proton Spectrometer at the HLLHC — LHCP 2024

Process	Fiducial cross	section [fb]
	$2 \mathbf{tags}$	$1 \mathrm{tag}$
jj	2	219
bb	0.04	6.3
W^+W^-	15	152
$\mu\mu$	1.3	172
$\mathbf{t}\mathbf{t}$	0.1	0.65
Η	0	0.23
HW^+W^-	0.01	0.06
ZZ	0.03	0.23
$\mathrm{Z}\gamma$	0.02	0.15
$\gamma\gamma$	0.003	0.19

SM cross sections for CEP processes

PPS2 physics reach: low mass

Drogogg	Fiducial cross section [f						
Frocess	$2 \mathrm{tags}$	$1 ext{ tag}^{-1}$					
jj	2	219					
bb	0.04	6.3					
W^+W^-	15	152					
$\mu\mu$	1.3	172					
tt	0.1	0.65					
Η	0	0.23					
HW^+W^-	0.01	0.06					
ZZ	0.03	0.23					
$\mathrm{Z}\gamma$	0.02	0.15					
$\gamma\gamma$	0.003	0.19					

SM cross sections for CEP processes

PPS2 physics reach: low mass

Drogogg	Fiducial cross	section [fb]				
F rocess	$2 \mathbf{tags}$	$1 ext{ tag}^{-}$				
jj	2	219				
bb	0.04	6.3				
W^+W^-	15	152				
$\mu\mu$	1.3	172				
tt	0.1	0.65				
Η	0	0.23				
HW^+W^-	0.01	0.06				
ZZ	0.03	0.23				
$\mathbf{Z}\gamma$	0.02	0.15				
$\gamma\gamma$	0.003	0.19				

SM cross sections for CEP processes

PPS2 physics reach: low mass

E. Robutti - The CMS Precision Proton Spectrometer at the HLLHC — LHCP 2024

PPS2 physics reach: high mass

particles are produced in $\gamma\gamma$ interactions

Tagged protons may be a powerful tool in studying various BSM scenarios where new

E. Robutti - The CMS Precision Proton Spectrometer at the HLLHC – LHCP 2024

Tagged protons may be a powerful tool in studying various BSM scenarios where new particles are produced in yy interactions

PPS2 physics reach: high mass

Tagged protons may be a powerful tool in studying various BSM scenarios where new particles are produced in yy interactions

PPS2 physics reach: high mass

PPS2 physics reach: complementarity

- High photon flux proportional to Z^4 , lower luminosity wrt. pp
- Large cross sections in the low mass range, $m_{\gamma\gamma} \lesssim 300$ GeV for Pb-Pb
- Low pileup conditions

Ultra-peripheral collisions in heavy ion interactions are a copious source of $\gamma\gamma$ interactions

Workshop on γ -induced processes, Durham June'23

15/25

PPS2 physics reach: complementarity

copious source of yy interactions

- High photon flux proportional to Z^4 , lower luminosity wrt. pp
- Large cross sections in the low mass range, $m_{\gamma\gamma} \lesssim 300$ GeV for Pb-Pb
- Low pileup conditions

PPS2 may be able to tag protons in pA interactions

Ultra-peripheral collisions in heavy ion interactions are a

Workshop on γ -induced processes, Durham June'23

15/25

PPS2 physics reach: complementarity

- High photon flux proportional to Z^4 , lower luminosity wrt. pp
- Large cross sections in the low mass range, $m_{\gamma\gamma} \lesssim 300$ GeV for Pb-Pb
- Low pileup conditions

PPS2 may be able to tag protons in pA interactions

- LHC as a vector-boson collider, complementary to $\gamma\gamma$
- VBF/VBS events tagged by forward jets
- Similar events with intact protons may be tagged by PPS2

Ultra-peripheral collisions in heavy ion interactions are a copious source of $\gamma\gamma$ interactions

Phase-2 CMS upgrade will enhance the coverage in the forward region

space, in the LHC straight section

- In each location, two horizontal roman pots

E. Robutti - The CMS Precision Proton Spectrometer at the HLLHC — LHCP 2024

Detector acceptance

Two different beam crossing schemes in the IP foreseen during LHC operations

- \Rightarrow different proton acceptance in the two cases
- Double proton tag can use different stations on the two sides
- Larger combined *m*_X acceptance compared to current setup

Detector packages

000

- Each roman pot will host both tracking and timing detectors (or 4D detectors)
- New design for detector vessels
- Cylindrical housing, maximising available space
- Larger thin window

Detector packages

Most services in common between tracking and timing:

- vacuum (~10 mb), cooling (~-30° C);
- common readout "motherboard"

- Each roman pot will host both tracking and timing detectors (or 4D detectors)
- New design for detector vessels
- Cylindrical housing, maximising available space
- Larger thin window

Detector packages

Most services in common between tracking and timing:

- vacuum (~10 mb), cooling (~-30° C);
- common readout "motherboard"

Proton fluence highly non-uniform over the detector area

• \Rightarrow internal vertical shift system necessary to distribute radiation damage

- Each roman pot will host both tracking and timing detectors (or 4D detectors)
- New design for detector vessels
- Cylindrical housing, maximising available space
 - Larger thin window

E. Robutti - The CMS Precision Proton Spectrometer at the HLLHC — LHCP 2024

Baseline design exploiting detectors being developed for CMS Phase 2

- Similar position and timing resolution required
- Similar radiation doses expected, although much less uniformly distributed
- Smaller occupancy wrt. hottest regions in CMS
- Same readout chain and integration in DAQ

Detector technologies

Baseline design exploiting detectors being developed for CMS Phase 2

- Similar position and timing resolution required
- Similar radiation doses expected, although much less uniformly distributed
- Smaller occupancy wrt. hottest regions in CMS
- Same readout chain and integration in DAQ

Tracking

- Based on Inner Tracker design
- 6 planes of 3D silicon pixels

Detector technologies

Baseline design exploiting detectors being developed for CMS Phase 2

- Similar position and timing resolution required
- Similar radiation doses expected, although much less uniformly distributed
- Smaller occupancy wrt. hottest regions in CMS
- Same readout chain and integration in DAQ

Tracking

- Based on Inner Tracker design
- 6 planes of 3D silicon pixels

Detector technologies

Timing

- Based on Endcap Timing Layer design
- 5 double-layer planes of LGADs
- Front end: ETROC \Rightarrow 1.3×1.3 mm² pads
- 2 or 3 chips/module

20	1	F	2	2	F	2	N.	1	5	200	8
-	*	۲	-	*	10	*		*	*	1	F
Sec.	20	5	24	1.	2	54	24	5	2	24	÷.
1	1	٤.	ε.	2	τ.	ς.	τ.	5	1	14	Υ.
	Ł	Ł	Ł	۴.	Ł	۰.	£	£	2	۳.	2
•	۴	۲	s.	۶.	٠	٠	a.	F	•	۳.	F
2 *	*	١.	2	*	ł٩	2	1	1	*	2	2
-	1	×	24	1	b.	-	-	-	*	1	F
2	1	3.	5	1	2	ŝ.	2.	5	<u>.</u>	24	ŝ.
1	2	L	2	2	1	2	2	2	L	2	2
	E	E.	٤.	٤.	5	Ε	E	£	٤.	2	2
÷	٣	F	s.	۲	÷	۲		۴	۳	۴	ş
2	1	¥.	2	2	25	1	1	1	1	2	7
-	-	-	-	2	-	2	-	2	-	2	-
5.	5	5.	5	5	ъ	6	5.	5	5.	54	-
Ξ.		2	1	1	2	٤.	2	2	1	2	2
2	٤.	£	₹	٤.	۲.	£	£	£	8	۳.	٤
÷*	1	•	*	٠.	•	*	1	÷.	۲	٠,	ş
20	2	Þ.	2	2	2	*	1	2	*	2	ř
	٩.	2	2		3	2	9	9	-	Sa .	9
÷	1	-			-	100		-		-	

21.6 mm

- Efficient operations throughout Run 2 and Run 3 data taking
- Several published results, more studies in progress

PPS has demonstrated the feasibility of studying physics processes with tagged forward

- Efficient operations throughout Run 2 and Run 3 data taking
- Several published results, more studies in progress

The physics program may largely benefit from HL-LHC conditions

• Large increase in integrated luminosity, extended proton acceptance

Summary/outlook

PPS has demonstrated the feasibility of studying physics processes with tagged forward

- Efficient operations throughout Run 2 and Run 3 data taking
- Several published results, more studies in progress

The physics program may largely benefit from HL-LHC conditions

- Large increase in integrated luminosity, extended proton acceptance Proposal to extend PPS program in the HL-LHC era approved
- New locations for detectors established
- Complete redesign of the detector system in progress Only forward proton spectrometer foreseen for the HL-LHC

Summary/outlook

PPS has demonstrated the feasibility of studying physics processes with tagged forward

- Efficient operations throughout Run 2 and Run 3 data taking
- Several published results, more studies in progress

The physics program may largely benefit from HL-LHC conditions

- Large increase in integrated luminosity, extended proton acceptance Proposal to extend PPS program in the HL-LHC era approved
- New locations for detectors established
- Complete redesign of the detector system in progress Only forward proton spectrometer foreseen for the HL-LHC Aiming to be ready for the start of HL-LHC operations!

Summary/outlook

PPS has demonstrated the feasibility of studying physics processes with tagged forward

E. Robutti - The CMS Precision Proton Spectrometer at the HLLHC — LHCP 2024