

Non-resonant Di-Higgs searches with the CMS experiment

Irene Dutta *for CMS collaboration* 12th Edition of the Large Hadron Collider Physics 4th June, 2024

CMS

The Higgs Boson

Many of the properties of the Higgs are already precisely measured

The Higgs Boson

Many of the properties of the Higgs are already precisely measured

We know very little about the Higgs potential!

Our current knowledge

.. and why we should be expanding that knowledge

.. and why we should be expanding that knowledge

$$V(h) \sim \lambda_3 v h^3 + \frac{1}{4} \lambda_4 h^4$$

$$V(h) \sim \lambda_3 v h^3 + \frac{1}{4} \lambda_4 h^4$$

$$V(h) \sim \lambda_3 v h^3 + \frac{1}{4} \lambda_4 h^4$$

$$V(h) \sim \lambda_3 v h^3 + \frac{1}{4} \lambda_4 h^4$$

$$\lambda_3 = \lambda_4$$
 in SM
 $\lambda = m_h^2/2v^2 \sim 0.13$

$$V(h) \sim \lambda_3 v h^3 + \frac{1}{4} \lambda_4 h^4$$

Expect observation in HL-LHC

$$\lambda_3 = \lambda_4$$
 in SM
 $\lambda = m_h^2/2v^2 \sim 0.13$

$$V(h) \sim \lambda_3 v h^3 + \frac{1}{4} \lambda_4 h^4$$

1 in 10¹⁵ (quadrillion) pp

collisions

Quartic coupling

Λ₄

$$V(h) \sim \lambda_3 v h^3 + \frac{1}{4} \lambda_4 h^4$$

1 in 10¹² (trillion) pp collisions

Expect observation in HL-LHC Out of reach at current colliders

$$\lambda_3 = \lambda_4$$
 in SM
 $\lambda = m_h^2/2v^2 \sim 0.13$

Study λ_3 by measuring the HH process in LHC

$$V(h) \sim \lambda_3 v h^3 + \frac{1}{4} \lambda_4 h^4$$

1 in 10¹² (trillion) pp collisions

colliders

1 in 10¹⁵ (quadrillion) pp

collisions

Expect observation in HL-LHC

$$\lambda_3 = \lambda_4$$
 in SM
 $\lambda = m_h^2/2v^2 \sim 0.13$

Study λ_3 by measuring the HH process in LHC

Kappa framework $\kappa_c = c^{obs}/c^{SM}$ for any coupling c Test *accuracy* and *deviation* of SM For e.g., $\kappa_{\lambda} = \lambda_3^{obs}/\lambda_3^{SM} = 1$ in SM

HH production at LHC

4600 Higgs Boson pairs ($\sigma \times \mathcal{L}$) produced in pp collisions between 2016 - 2018 Challenging to find experimentally

Additional non SM like couplings in HH

Additional non SM like couplings in HH

HH decays

$HH \to \tau \tau \gamma \gamma$

Search in hadronic + leptonic τ final states

 Background modelling: Analytic functions determined by fitting the m_{vv} spectrum

CMS-PAS-HIG-22-012

 Signal (and single Higgs): double Crystal Ball fitted on simulation

$HH \to \tau \tau \gamma \gamma$

CMS-PAS-HIG-22-012

🛟 Fermilab

95% CL Upper limit on σ_{HH} - 33 (26) x SM Obs (Exp)

.. Also includes results on resonant X \rightarrow HH and X \rightarrow HY production See plenary from Monday, <u>S. Hirose</u>

H + HH combination

Combine all available single H and HH analyses from CMS

H + HH combination

Constrain parameter phase-space in 2D

Constrain with single Higgs

→ Constrain with HH <</p>

Non-resonant HH Run 2 combination

bb ττ

Combined

2.5 x SM

- Observed

68% expected 95% expected

Nature 607 (2022), 60-68

Summary of results from HH analyses

CMS Preliminary 138 fb⁻¹ (13 TeV) 138 fb⁻¹ (13 TeV) **CMS** Preliminary 138 fb⁻¹ (13 TeV) $\kappa_1 = \kappa_1 = 1$ - Observed **CMS** Preliminary ----- Median expected $\kappa_v = \kappa_{2v} = 1$ Excluded at 95% CL $\kappa_{t} = 1$ 68% expected $\kappa_{\lambda} = 1$ Excluded at 95% CL $\kappa_v = 1$ Observed --- Best fit value ····· 95% expected $\kappa_{t} = 1$ ////, Observed --- Best fit value $\kappa_{2V} = 1$ - SM prediction 111' Expected Expected: 26 $\kappa_V = 1$ CMS-PAS-HIG-22-012 //// Expected —— SM prediction WW yy (VHH) bb bb CMS-PAS-HIG-21-014 Expected: 52 $\kappa_{\lambda} = -25.1^{+6.8}_{-5.6}$ (VHH) bb bb Observed: 97 CMS-PAS-HIG-22-006 $\kappa_{2V} = 9.9^{+2.3}_{-2.4} \cup [-10.5, -6.5]$ WW yy CMS-PAS-HIG-22-006 bb WW $\kappa_{\lambda} = 14.8^{+5.5}_{-13.3}$ Expected: 18 CMS-PAS-HIG-21-005 CMS-PAS-HIG-21-014 bb WW Observed: 14 $\kappa_{2V} = 1.0^{+1.3}_{-1.3}$ bb WW CMS-PAS-HIG-21-005 bb ZZ 🐥 $\kappa_1 = 4.2^{+5.3}_{-5.7}$ Acc. by JHEP (2206.10657) CMS-PAS-HIG-21-005 Expected: 40 Multilepton 🐥 Observed: 32 bb ZZ 🌲 $\kappa_{2V} = 3.5^{+1.2}_{-6.1}$ $\kappa_{\lambda} = 2.3^{+5.6}_{-5.4}$ Acc. by JHEP (2206.10268) Multilepton + Acc. by JHEP (2206.1065) Expected: 19 Acc. by JHEP (2206.10268) Multilepton + bb yy 🐥 Observed: 21 $\kappa_{\lambda} = 2.3^{+5.2}_{-5.2}$ $\kappa_{2V} = 2.1^{+0.8}_{-2.8}$ Acc. by JHEP (2206.10268 JHEP 03 (2021) 257 bb yy 👫 JHEP 03 (2021) 257 Expected: 5.5 bb bb 🐥 bb TT 🐥 $\kappa_{\lambda} = -0.2^{+9.9}_{-2.8}$ Observed: 8.4 $\kappa_{2V} = 1.1^{+0.8}_{-0.8}$ Nature 607 (2022) 60 Acc. by PLB (2206.09401) bb TT 👫 bb yy 🐥 Acc. by PLB (2206.09401) Expected: 5.2 $\kappa_1 = 3.6^{+2.8}_{-2.9}$ bb bb 🐥 Observed: 3.3 JHEP 03 (2021) 257 $\kappa_{2V} = 1.5^{+0.2}_{-0.4}$ Nature 607 (2022) 60 bb tt 👫 bb bb 🐥 $\kappa_1 = -0.2^{+2.5}_{-1.7}$ Nature 607 (2022) 60 Expected: 4.2 Acc. by PLB (2206.09401) Comb. of 🐥 Observed: 7.2 $\kappa_{2V} = 1.0^{+0.2}_{-0.2}$ Comb. of ♣ Nature 607 (2022) 60 Comb. of + $\kappa_{\lambda} = 1.7^{+2.8}_{-1.7}$ Expected: 2.5 Nature 607 (2022) 60 Nature 607 (2022) 60 -10 -5 0 5 10 Observed: 3.4 -40 -30 -20 -10 0 10 20 30 40 κ_{2V} 10 100 1000 K 95% CL limit on σ (pp \rightarrow HH)/ $\sigma_{Theorem}$

CMS Summary results for HIggs

ττγγ

Run 3 improvements

New online triggering strategies for Run 3 based on ParticleNet for b-tagging and DeepTau for T tagging show great improvements over Run 2 baseline s = 13.6 TeV s = 13, 13.6 TeV 1.6 1.6 Trigger Efficiency Efficiency CMS CMS triggers: $\epsilon(HH \rightarrow 2b2\tau) = 58\%$ Run 3 2023 HH trigger ϵ (HH \rightarrow 4b) = 82% Simulation Preliminary Simulation Preliminary 1.4 1.4 $HH \rightarrow 2b2\tau_{had}$ with $\kappa_{\lambda} = 1$ HH \rightarrow 4b with $\kappa_2 = 1$ tun 3 2022 HH trigger ϵ (HH \rightarrow 4b) = 68% agers: $\epsilon(HH \rightarrow 2b2\tau) = 34\%$ 1.2 1.2 Run 2 ε(HH→ 4b) = 52% -trigger: ε(HH → 2b2τ) = 3% Trigger 1 0.8 0.8 0.6 0.6 – SM m_{нн} (sketch) - SM m_{HH} (sketch) 0.4 0.4 Event selection: ≥ 2 jets, p, > 20 GeV, n < 2.5, loose b-tagging, 0.2 $\geq 2 \ \tau$ with p_ > 20 GeV and $|\eta| < 2.5,$ loose τ -identification 0.2 Event selection: ≥ 4 jets with p₊ > 30 GeV and $|\eta| < 2.5$ 0 0 200 400 600 800 1000 200 300 400 700 800 900 1000 500 600 m_{HH}^{Reco} (GeV) m_{HH}^{Reco} (GeV)

Expect improvements to all HH searches with decays to bb or TT

Run3 and HL-LHC projections

Data-taking period	Lumi (fb ⁻¹)	HH projection	Reference
Run 2	137	2.5 x SM (CMS)	<u>Nature, 607, 60-68</u> <u>(2022)</u>
Run 2 + Run 3	137 +150 = 300	1 x SM (ATLAS + CMS)	Luminosity based scaling (back-of envelope)
HL-LHC (with upgraded detectors)	3000	4σ (ATLAS +CMS)	CERN-LPCC-2018-04 (based on fast simulations)

The many new developments (triggers, machine learning

based taggers, new decay channels, novel detectors ..)

have the potential to observe HH at 5 o at HL-LHC

10² bb bb bb tt 10 95% CL limit on $\sigma({
m pp}
ightarrow{
m HH})/\sigma_{
m Theory}$ 10² bb yy Combined 10 Early Inc Run 2 This paper HLIHC Observed --- Median expected 68% expected 95% expected

CMS

Nature 607 (2002), 60-68

Summary

- The HH process is crucial for understanding the shape of the Higgs potential
- Great results from Run 2
 - complex analysis techniques
 - \circ new HH decay channels
 - H+HH combination
- Run 3 will bring new opportunities → improved triggering strategy
- The novel detector technology, ML techniques, triggering strategies ... etc have the capacity to push to 5σ observation at HL-LHC

Backup

Accessing κ_λ in single Higgs

LHCHWG-2022-002

 κ_{λ} also be accessed through indirect NLO contributions to single Higgs production and decay

 $\sigma_{\rm H} > \sigma_{\rm HH} \Rightarrow$ sensitivity to smaller variations

Allows constraining HH couplings independent of other H couplings

H + HH combination

Combine all available single H and HH analyses from CMS

Analysis	Int. luminosity (fb $^{-1}$)	Max. granularity	References
$H \rightarrow ZZ \rightarrow 4l$	138	STXS 1.2	[35]
$ggH(b\overline{b})$	138	Inclusive	[36]
$VH \rightarrow b\overline{b}$	77	Inclusive	[37, 38]
$t\bar{t}H(b\overline{b})$	36	Inclusive	[39]
ttH multilepton	138	Inclusive	[40]
$H \rightarrow \mu \mu$	138	Inclusive	[41]
${ m H} ightarrow \gamma \gamma$	138	STXS 1.2	[42, 43]
$H \rightarrow \tau \tau$	138	STXS 1.2	[44]
$H \rightarrow WW$	138	STXS 1.2	[45]

Analysis	Int. luminosity (fb $^{-1}$)	Targeted production modes	References
$HH ightarrow \gamma \gamma b\overline{b}$	138	ggHH and qqHH	[43]
$HH \rightarrow \tau \tau b \overline{b}$	138	ggHH and qqHH	[46]
$\mathrm{HH} \to 4 \mathrm{b}$	138	ggHH and qqHH	[47, 48]
HH (leptons)	138	ggHH	[49]
$\mathrm{HH} \to \mathrm{WWb}\overline{\mathrm{b}}$	138	ggHH and qqHH	[50]
$VHH \rightarrow b\overline{b}b\overline{b}$	138	VHH	[51]

H + HH combination

Combine all available single H and HH analyses from CMS

Run 3 triggers

 $\varepsilon = \frac{N_{\rm events}({\rm pass \ trigger \ and \ event \ selection})}{N_{\rm events}({\rm pass \ event \ selection})}$

Trigger	Requirement	Rates at HLT at 2x10^34 cm-2s-1
2023 HH trigger	HT > 280 GeV, 4 jets with pT > 30 GeV, PNet@AK4(mean 2 highest b-tag score) > 0.55	180 Hz
2022 HH trigger	4 jets pT > 70, 50, 40, 35 GeV, HT > 340 GeV PNet@AK4(mean 2 highest b-tag score) > 0.65	60 Hz
2018 triple b-tag [2,3]	HT > 340 GeV, 4 jets pT > 75, 60, 45, 40 GeV, 3 b-tags with DeepCSV > 0.24	8 Hz
Run 3 tau-triggers [4]	Double medium DeepTau taus with pT > 35 GeV $ \eta < 2.1$ Double medium DeepTau taus with pT > 30 GeV $ \eta < 2.1$, PFJet 60 GeV Single loose DeepTau on hadronic tau with pT > 180 GeV $ \eta < 2.1$	50 Hz 20 Hz 17 Hz
Run 3 MET-trigger [5]	Missing transverse energy (MET) (no muon) > 120 GeV, HT (no muon) > 120 GeV	42 Hz

