

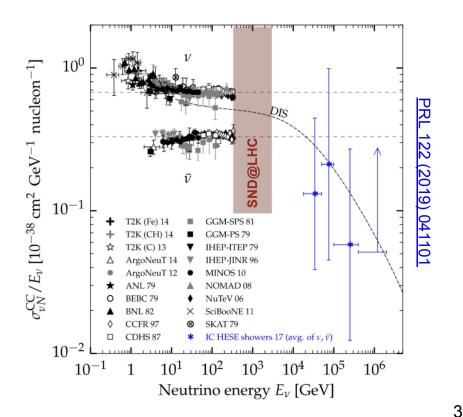
Scattering and Neutrino Detector at the LHC

SND@LHC upgrades

Ettore Zaffaroni, for the SND@LHC collaboration LHCP 2024, Boston, USA 05/06/2024

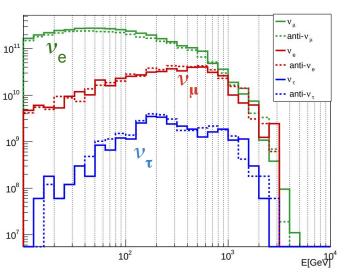
Outline

Scattering and Neutrino Detector at the LHC


- The SND@LHC detector in Run 3
- Proposed upgrade for LHC Run 4 and beyond
- Effects on the physics reach

Motivation

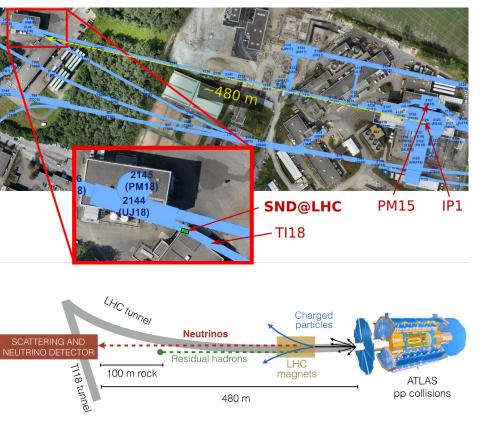
- LHC provides high-energy neutrinos
 - LHC neutrino studies proposed ~30 years ago
- Measure of $pp \rightarrow vX$ in unexplored domain
 - Energy range from 100s GeV to few TeV
- 2 experiments
 - FASER ν , on axis ($\eta > 9$)
 - **SND@LHC**, off axis (7.2 < η < 8.4), ν mainly produced in charmed hadrons decay



Physics programme

- Measurement of charm production at high pseudorapidity $(gg \rightarrow c\bar{c})$
- Probe gluon PDF at low momentum fraction $x \sim 10^{-6}$. Relevant for
 - FCC detectors
 - Extra-galactic neutrino observation (atmospheric neutrino background)
- Test lepton flavour universality with neutrinos
 - Thanks to the ability to distinguish all neutrino flavours
- Direct search of feebly-interacting particles

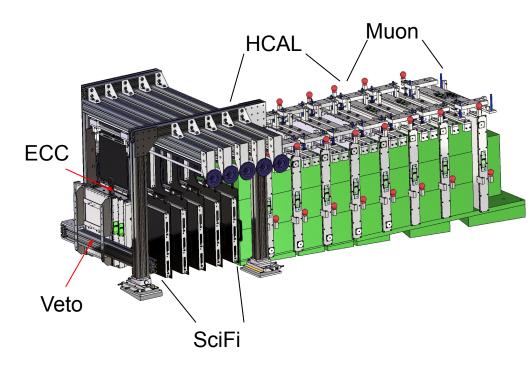
JINST 19 P05067



SND@LHC

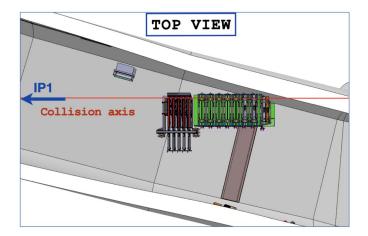
- About 480 m from ATLAS interaction point
- TI18 tunnel

EPFL

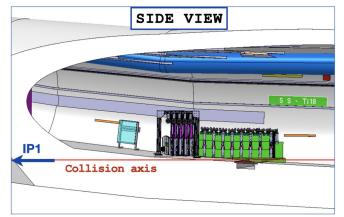

- Used in the past as transfer line from SPS to LEP
- Shielded by 100 m of rock and LHC magnet deflection
- Angular acceptance: $7.2 < \eta < 8.4$
- First phase: collect 250 fb⁻¹ in Run 3

Detector

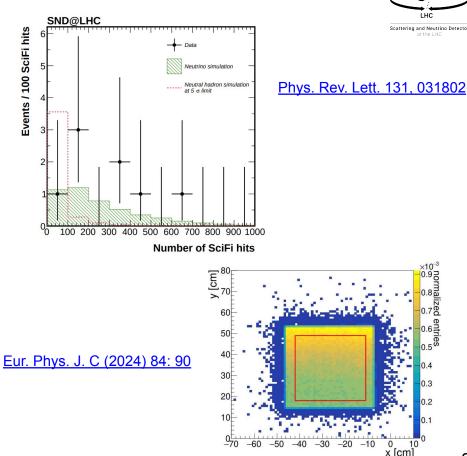
- Veto
 - Scintillators: tag incoming muons
- Vertex detector and EM calorimeter
 - Emulsion cloud chambers (ECC) w/ tungsten, 5 walls, 830 kg: neutrino interaction detection
 - Scintillating fibres (SciFi) tracker,
 5 modules: timestamp, position and energy measurement
- HCAL-Muon system
 - Iron walls (green) and scintillators: energy measurement and muon detection
- Main limitation: has to fit in the TI18 tunnel



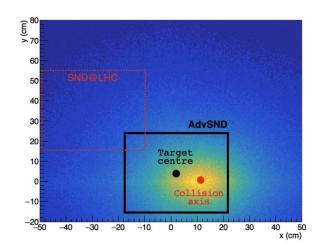
Detector paper: JINST 19 P05067

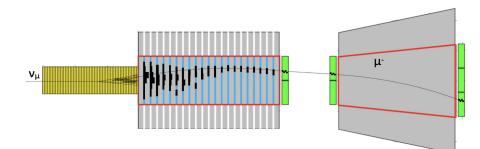

Detector

- Veto
 - Scintillators: tag incoming muons
- Vertex detector and EM calorimeter
 - Emulsion cloud chambers (ECC) w/ tungsten, 5 walls, 830 kg: neutrino interaction detection
 - Scintillating fibres (SciFi) tracker,
 5 modules: timestamp, position and energy measurement
- HCAL-Muon system
 - Iron walls (green) and scintillators: energy measurement and muon detection
- Main limitation: has to fit in the TI18 tunnel



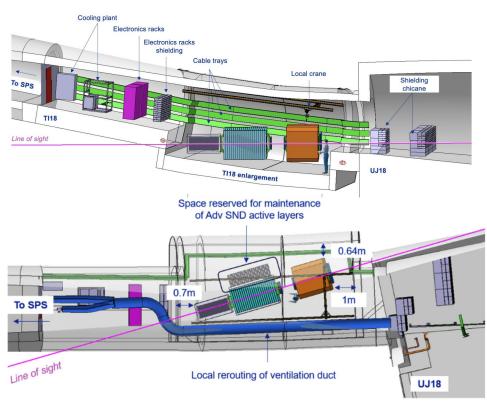
Physics results


- First measurement of muon neutrinos produced at the LHC
 - Using electronic detectors only
 - 32 events observed
 - Emulsion films are currently being scanned
 - See <u>Chris' presentation</u> (Tue)
- Muon flux measurement with electronic detectors and emulsions
 - Remarkable agreement with simulation: ~25 %



Proposed future upgrades

- Civil engineering modifications to the tunnel are feasible in LS3 (2026-2029)
- LOI recently submitted
 (CERN-LHCC-2024-007)
- Two upgrade paths
 - With dedicated spectrometer
 - With magnetized HCAL only
- Under discussion, addition of a NEAR detector
 - reduce systematics
 - cross section measurements



The two upgrade paths

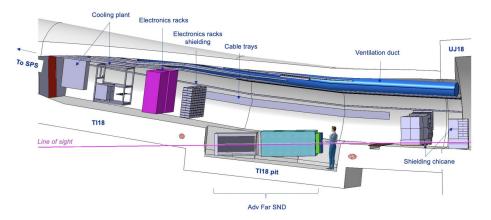
- Feasibility study is currently underway
 - 2 options are considered
 - both minimise impact on HL-LHC upgrades
- With magnetic spectrometer
 - Requires excavation of the tunnel wall and the floor
- Only magnetized HCAL
 - Floor excavation only
- "Prototype" for SHiP

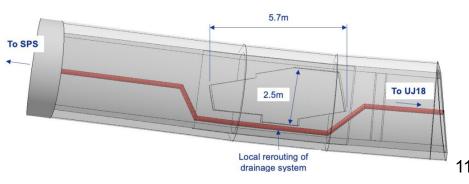
SPSL

• See <u>Oliver's talk</u> (Fri)

Scattering and Neutrino Detector

The two upgrade paths

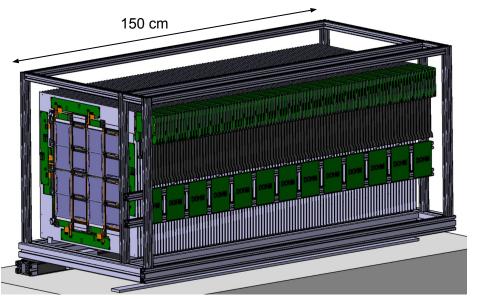


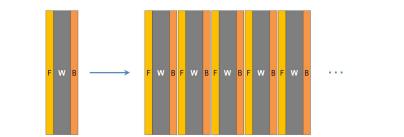

Scattering and Neutrino Detector at the LHC

- Feasibility study is currently underway
 - 2 options are considered
 - both minimise impact on HL-LHC upgrades
- With magnetic spectrometer
 - Requires excavation of the tunnel wall and the floor
- Only magnetized HCAL
 - Floor excavation only
- "Prototype" for SHiP

SPSI.

• See <u>Oliver's talk</u> (Fri)

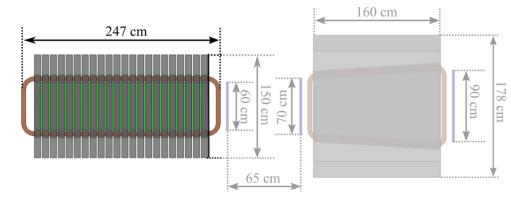


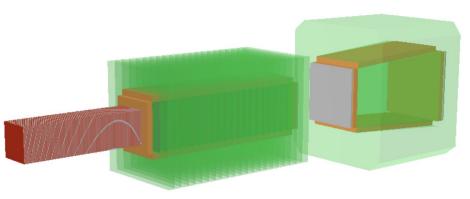


12

Target and vertex detector

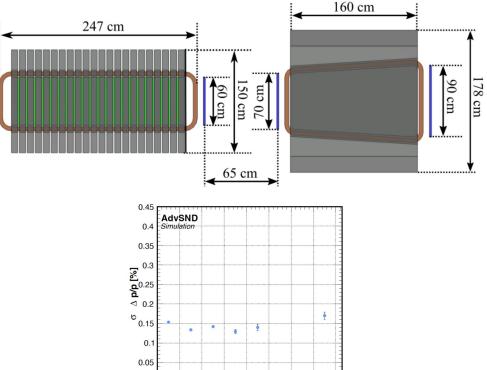
- The current vertex detector exploits the emulsion cloud chamber technology
- This cannot be used in the HL-LHC environment
 - High muon flux
- New silicon vertex detector based on CMS Tracker Outer Barrel strips modules
- Interleaved with 7 mm tungsten plates
 - Instrumented mass: 1.75 t





Magnetized hadronic calorimeter

- Similar technology to current one (iron and plastic scintillator)
- Increased segmentation, addition of vertical and tile layers
 - \circ Scintillator every 0.5 λ_{int}
 - addition of Si tracker modules in magnetized HCAL only path
- Addition of a coil around the detector planes
 - Magnetized iron, increases sensitivity to the muon charge
 - 1.75 T field



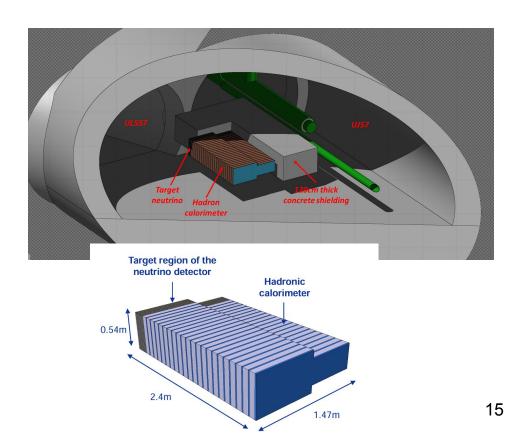
Muon system and magnet

- Muons trajectories measured with drift tubes
 - "MiniDT" technology from CMS
 - 100 µm expected position resolution
- Magnet to further bend the muon trajectories
 - 1.75 T field
- Expected momentum resolution ~16%

Momentum [GeV/c]

0 100 200 300 400 500 600 700 800

14


Possible NEAR detector

- Neutrino detector covering $4 < \eta < 4.5$ region
 - Placed close to CMS
 - Precise location is being studied
- Measurement of neutrinos in a region covered by LHCb acceptance
- Drastic reduction of systematics

SPSL

• Direct experimental constraints

Scattering and Neutrino Detector at the LHC

Physics reach

- Significant improvement of statistical and systematics uncertainties
- Possibility to measure neutrinos interaction cross section up to 1 TeV

$10^{4} = v_{\mu} + ar$ $v_{e} + ar$ $v_{\tau} + ar$	nti-v _μ nti-v _e nti-v _τ	$< E_{\nu_{i}} > = 8100$	GeV
		$E_{\nu_e} > = 1100 GeV$	
		$< E_{\nu_{\tau}} > = 1100 GeV$	
	10 ²	10 ³	E[GeV]

Neutrino interactions in AdvSDN

DPMJET+FLUKA+GENIE total 3000 fb-1

	ν in acceptance		CC DIS		NC DIS	
Flavour	All	not from π/K	All	not from π/K	All	not from π/K
$ u_{\mu}$	$8.6 imes 10^{13}$	8.2×10^{12}	1.2×10^{5}	$3.3{\times}10^4$	3.6×10^4	1.0×10^{4}
$rac{ u_{\mu}}{ar{ u}_{\mu}}$	$7.0 imes 10^{13}$	$9.6 imes 10^{12}$	4.4×10^{4}	$1.8{ imes}10^4$	1.6×10^{4}	$6.5{ imes}10^3$
ν_e	$1.3 imes 10^{13}$	$9.1 imes 10^{12}$	4.2×10^{4}	$3.6{ imes}10^4$	1.3×10^{4}	1.1×10^{4}
$\bar{ u}_e$	$1.3 imes 10^{13}$	$9.2 imes 10^{12}$	1.9×10^{4}	$1.7{ imes}10^4$	7.0×10^{3}	6.1×10^{3}
$ u_{ au}$	7.3×10^{11}	$7.3 imes 10^{11}$	2.1×10^3	$2.1{ imes}10^3$	6.7×10^{2}	6.7×10^{2}
$ar{ u}_{ au}$	9.4×10^{11}	9.4×10^{11}	$1.2{ imes}10^3$	1.2×10^2	4.6×10^2	4.6×10^{2}
Tot	$ 1.8 \times 10^{14}$	3.8×10^{13}	2.3×10^{5}	1.1×10^{5}	7.3×10^{4}	$3.5{ imes}10^4$

Run 3 Run 4+5

	-	-	-	-
Measurement	Uncertainty Stat		Uncertainty Stat Svg	
	Stat.	Sys.	Stat.	Sys.
Charmed hadron yield	5%	35%	1%	5%
ν_e/ν_τ ratio for LFU test	30%	22%	5%	10%
ν_e/ν_μ ratio for LFU test	10%	10%	1%	5%
ν_{μ} and $\overline{\nu}_{\mu}$ cross-section	-	-	1%	5%

EPFL

17

• The SND@LHC detector is successfully taking data since 2022

- The first physics results have been published
 - Many others are on the way
- Two upgrade paths for future upgrades
 - Significant improvements in physics reach

Scattering and Neutrino Detector at the LHC

Backup

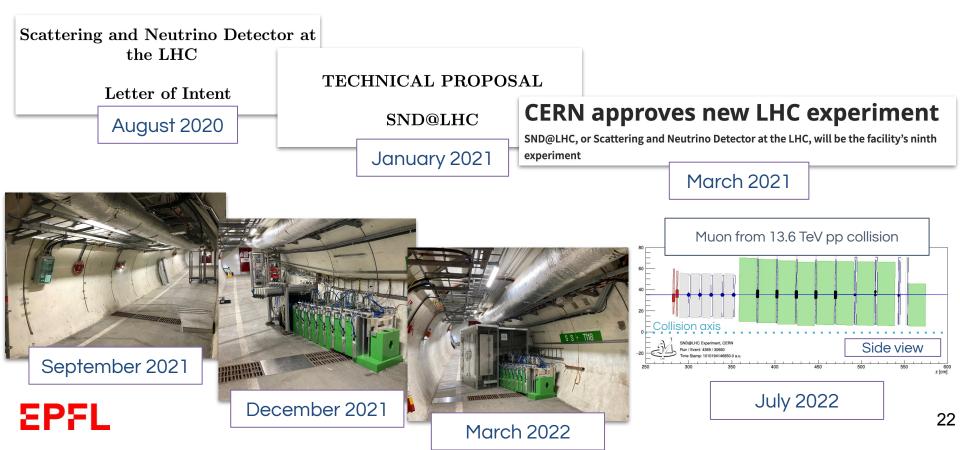
Scattering and Neutrino Detector

Neutrino physics in Run 3

Measurement	Uncertainty	
	Stat.	Sys.
$pp \rightarrow \nu_e X$ cross-section	5%	15%
Charmed hadron yield	5%	35%
ν_e/ν_τ ratio for LFU test	30%	20%
ν_e/ν_μ ratio for LFU test	10%	10%
Measurement of NC/CC ratio	5%	10%

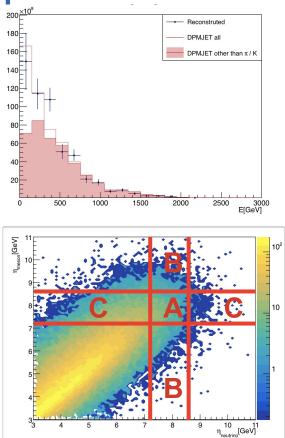
	Neutrinos i	n acceptance	CC neutrino	interactions	NC neutrino	interactions
Flavour	$\langle E \rangle ~[GeV]$	Yield	$\langle E \rangle ~[GeV]$	Yield	$\langle E \rangle ~[GeV]$	Yield
$ u_{\mu}$	120	$3.4 imes 10^{12}$	450	1028	480	310
$ar{ u}_{\mu}$	125	$3.0 imes 10^{12}$	480	419	480	157
$ u_e$	300	$4.0 imes 10^{11}$	760	292	720	88
$ar{ u}_e$	230	$4.4 imes 10^{11}$	680	158	720	58
$ u_{ au}$	400	$2.8 imes 10^{10}$	740	23	740	8
$ar u_ au$	380	$3.1 imes 10^{10}$	740	11	740	5
TOT		$7.3 imes 10^{12}$		1930		625

EPFL


Constraints without NEAR detector

- Constraints to PDF
 - Comparing different pseudorapidities (e.g. $\eta > 8 \text{ vs } \eta < 8$), see J. Rojo CERN-TH Colloquium 11/2023
- Cross section / flux
 - Measurements from LHCf (not published yet)

Experiment timeline

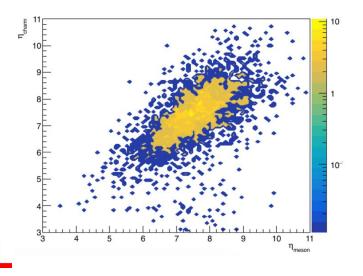


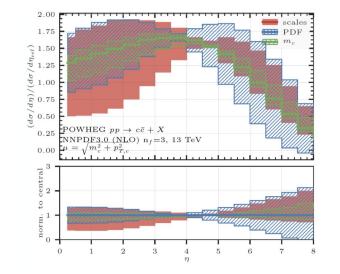
Neutrino physics – charm production

- 90% of v_e events produced in charm decays
 - Measurement of heavy quark production at high η
- Measure $\sigma(pp \rightarrow v_e X)$

•

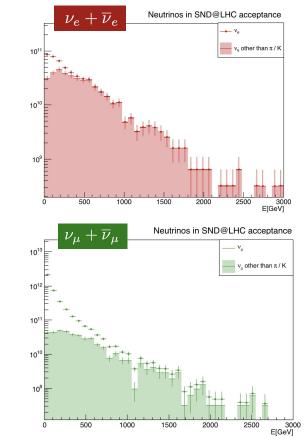
- Unfold detector response and find energy spectrum
- Use SM σ_v for CC interactions
- Derive charmed hadrons yield
 - Remove contribution from K decays
 - Exploit angular correlation between neutrino and parent hadron




<u>.HCC-P-016</u>

Neutrino physics – QCD

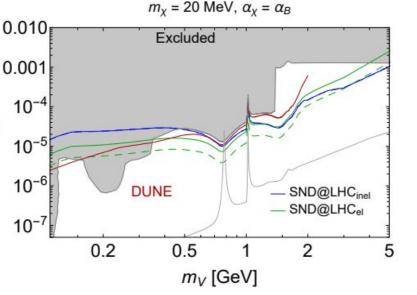
- Angular correlation between charmed hadron and parent quark
- . Dominant cc production process is gg scattering in this η range
 - SND@LHC probes lowest momentum fraction $x \sim 10^{-6}$, gluon PDF unknown
 - Relevant for future circular colliders and atmospheric neutrinos



Neutrino physics – LFU

- $v_e^{}$ and $v_{\tau}^{}$ mostly come from charm decays
 - R₁₃ independent on charm production systematics
 - Depends on decay BR and charm fractions
- Similar for $v_{e}^{}$ and $v_{\mu}^{},\,R_{12}^{}$ with contamination by π/K
 - Contamination flat ~35% above 600 GeV
 - No systematics from BR and charm fractions

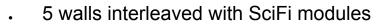
$$R_{13} = \frac{N_{\nu_e + \overline{\nu}_e}}{N_{\nu_\tau + \overline{\nu}_\tau}} = \frac{\sum_i \tilde{f}_{c_i} \tilde{B}r(c_i \to \nu_e)}{\tilde{f}_{D_s} \tilde{B}r(D_s \to \nu_\tau)},$$
$$R_{12} = \frac{N_{\nu_e + \overline{\nu}_e}}{N_{\nu_\mu + \overline{\nu}_\mu}} = \frac{1}{1 + \omega_{\pi/k}}$$


BSM physics - scattering

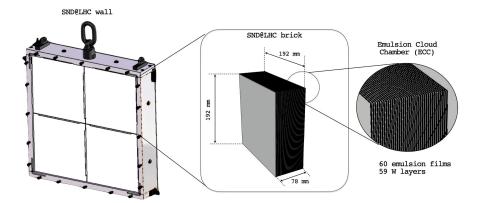
 α_B

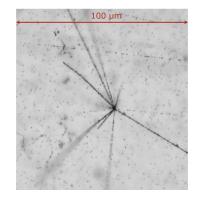
- Dense target also suited to search for feebly interacting particles
- E.g. search for light dark matter (< 1 GeV)
 - Other direct detection experiments sensitive lo large masses
 - Complementary to missing energy technique
- . Several models and signatures

.


- Elastic or inelastic scattering off nucleons
- Elastic scattering off electrons
- Time-of-flight techniques (sensitive to larger masses)

JHEP03(2022)006

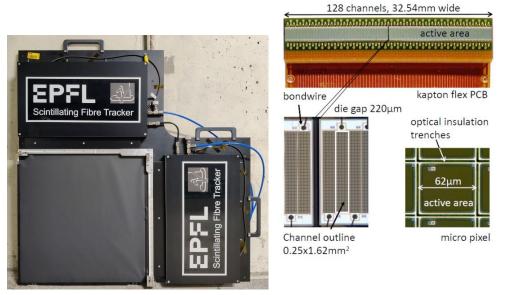

Emulsion cloud chambers



- 1 wall: 60 alternating layers of tungsten sheets (1 mm) and emulsion films (0.3 mm)
- Micrometric spatial resolution but no timestamp
- Vertex detector, ecal (40 X_0 per wall)
 - Allow to identify tau neutrinos

SPSI

 Exposed for ~25 fb⁻¹, then developed and scanned

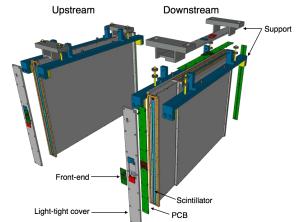


Target tracker

- Based on LHCb SciFi technology
- Scintillating fibre mats read out by SiPMs
 - 39x39 cm² active area
- < 100 um spatial resolution
- ~350 ps time resolution

SPS

- Locate neutrino interactions in emulsions and assign timestamp
- First energy measurement (refined after emulsions development)



Veto and HCAL-muon system

- . Scintillator bar of different sizes
- Veto 42x42 cm²
 - Optimized for particle detection efficiency
- Upstream HCAL 80x60 cm²
 - Optimized for energy measurement
- Downstream muon 80x60 cm²
 - Optimized for muon isolation and detection efficiency

The DAQ boards

- . Same DAQ board for all subsystems
- Developed at EPFL, based on Cyclone V processor+FPGA
 - Clock from TTC system, using TTCrx chip
 - Data transmitted over Ethernet to the server
- 4 front-end board slots

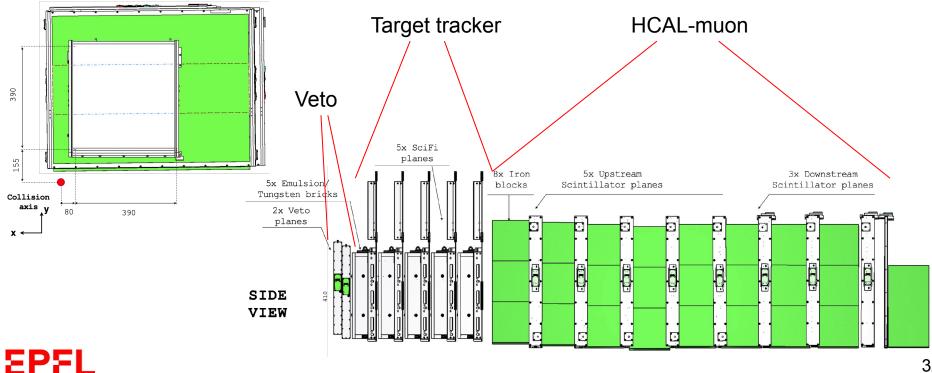
FPF

- 512 channels in total

Scattering and Neutrino Detector at the LHC

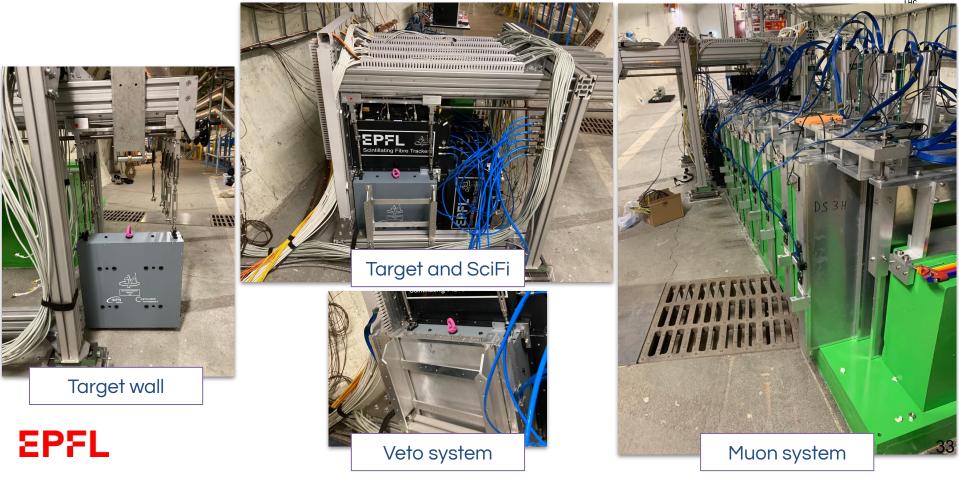
The front-end boards

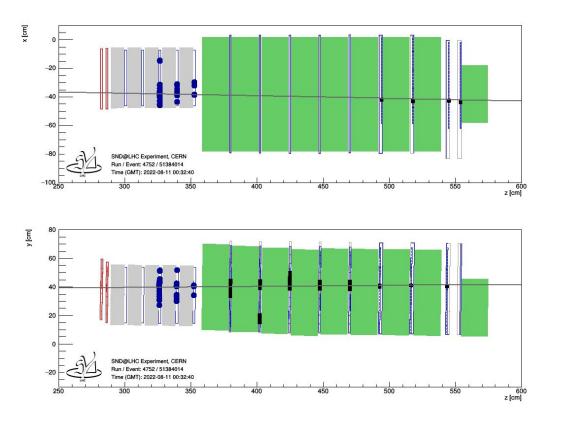
- . Each board contains 2 TOFPET2 chips
 - Analogue front-end and ADCs
 - Data fully digitized
 - 128 channels in total
- Allows for low signal thresholds (0.5 pe)
 - 3-threshold system for best time and amplitude resolution and dark noise reduction
- Good timing (40 ps resolution) and amplitude measurement with charge integration or time-over-threshold



Scattering and Neutrino Detector at the LHC

Detector


FRONT VIEW


Detector installation in TI18

v_{μ} CC-like candidate event in Run 3 data

2022 Aug 11th

Scattering and Neutrino Detector at the LHC