Searches for BSM in top final states in ATLAS LHCP 2024, Boston, USA, June 3rd-7th

Mário José Sousa on behalf of the ATLAS Collaboration

Istituto Nazionale di Fisica Nucleare - Genova

June 5th, 2024



#### BSM searches in the top-quark sector



© 2023 Craiyon LLC. All rights reserved.

- The Standard Model is the best theory we have for explaining the universe so far.
- The "recent" discovery of the Higgs boson closes this chapter but several fundamental questions are left unanswered.
- We know that there is physics beyond the Standard Model (BSM).
- The top-quark is one of the touchstones that we can use to probe BSM theories.

#### Outline

Mode Fraction  $(\Gamma_i/\Gamma)$ Confidence level Γ<sub>1</sub> Wq(q = b, s, d)Γ2 WЬ Γ<sub>3</sub> ev b  $(11.10\pm0.30)\%$ Γ4  $\mu \nu_{\mu} b$ (11.40±0.20) %  $\Gamma_5$  $\tau \nu_{\tau} b$  $(10.7 \pm 0.5)\%$ Γ<sub>6</sub> qqb (66.5 ±1.4 )%  $\Gamma_7$  $\gamma q(q=u,c)$ [a] < 1.8 $\times 10^{-4}$ 95% Гø  $H^+ b$ ,  $H^+ \rightarrow \tau \nu_{\tau}$ 

t DECAY MODES

| https://pdg.lbl.gov          | Page 12                                     | Created: $12/4/2023$ 14:09    |
|------------------------------|---------------------------------------------|-------------------------------|
| Citation B.I. Wedness at al. | (Destials Data Course) Data Three Eve Diver | 2022 002C01 (2022) d 2022 d-+ |

|                 | $\Delta T = 1$ weak m                                                                               | neutral         | current (                                    | T1) modes             |     |
|-----------------|-----------------------------------------------------------------------------------------------------|-----------------|----------------------------------------------|-----------------------|-----|
| Γ9              | Zq(q=u,c)                                                                                           | T1              | [b] < 5                                      | × 10 <sup>-4</sup>    | 95% |
| $\Gamma_{10}$   | Hu                                                                                                  | T1              | < 1.                                         | .9 × 10 <sup>-4</sup> | 95% |
| Γ11             | Нc                                                                                                  | Τ1              | < 7.                                         | $.3 \times 10^{-4}$   | 95% |
| Γ <sub>12</sub> | $\ell^+ \overline{q} \overline{q}'(q=d,s,b; q'=u,c)$                                                | T1              | < 1.                                         | $.6 \times 10^{-3}$   | 95% |
|                 | Lepton Family n                                                                                     | umber           | ( <i>LF</i> ) viola                          | ating modes           |     |
| Γ <sub>13</sub> | $e^{\pm} \mu^{\mp} c$                                                                               | LF              | < 8.                                         | $.9 \times 10^{-7}$   |     |
| Γ <sub>14</sub> | $e^{\pm} \mu^{\mp} u$                                                                               | LF              | < 7                                          | $\times 10^{-8}$      |     |
| [a]<br>[b]      | This limit is for $\Gamma(t \rightarrow \gamma q)$<br>This limit is for $\Gamma(t \rightarrow Z q)$ | )/Γ(t<br>q)/Γ(t | $\rightarrow W b$ ).<br>$\rightarrow W b$ ). |                       |     |

- PDG (link) dated from last year regarding the top quark decay.
- With close to 100% of the branching ratio,  $t \rightarrow Wb$ .
- Some updates from ATLAS regarding:
- $\mu^{\pm}\tau^{\mp}q$  Charged-lepton-flavour violation.
- $\Gamma_{10}$  Hu Flavour changing neutral currents.
- $\Gamma_{11}$  Hc Flavour changing neutral currents.
  - $\Gamma_{10}$  and  $\Gamma_{11}$  with  $H \rightarrow \gamma \gamma$  and  $H \rightarrow VV^*$



- Search for  $\mu \tau qt$ , with q = u, c.
- This interaction might happen in the production or decay of the top quark.
- Analysis targets events containing:
  - Two muons with the same electric charge.
  - One hadronically decaying tau lepton.
  - Exactly one jet that is b-tagged.
  - $\blacktriangleright$   $\geq$  0 jets without b-tags.
- The observed data is interpreted:
  - within the effective field theory (EFT) framework.
  - ▶ to test a leptoquark (LQ) hypothesis.

- The Wilson coefficients (c) weight the EFT operators (O) of the effective Lagrangian, which assumes a mass scale of new physics,  $\Lambda$  much larger than achieved at LHC.
  - ► In backup, EFT operator basis and degrees of freedom.

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \mathcal{L}_{\rm eff} = \mathcal{L}_{\rm SM} + \sum_{X} \frac{c_X}{\Lambda^2} \mathcal{O}_X + \dots$$

$$\Gamma(t \to \ell_i^+ \ell_j^- q_k) = \frac{m_t}{6144\pi^3} \left(\frac{m_t}{\Lambda}\right)^4 \left\{ 4|c_{\rm lq}^{-(ijk3)}|^2 + 4|c_{\rm eq}^{(ijk3)}|^2 + 4|c_{\rm lu}^{(ijk3)}|^2 + 4|c_{\rm leq}^{(ijk3)}|^2 + 4|c_{\rm$$

- For the LQ interpretation, a scalar leptoquark,  $S_1$  is introduced and may couple to multiple generations of charged leptons and up-type quarks.
  - A flavour hierarchy in the coupling strengths assumed with the magnitude in the quark and lepton generations as a constant ratio: R=0.1 where λ<sub>tτ</sub> is the strongest coupling.

$$\lambda_{ki} \in \begin{pmatrix} \lambda_{t\tau} & \lambda_{c\tau} & \lambda_{u\tau} \\ \lambda_{t\mu} & \lambda_{c\mu} & \lambda_{u\mu} \\ \lambda_{te} & \lambda_{ce} & \lambda_{ue} \end{pmatrix} \equiv \lambda^{\mathrm{LQ}} \begin{pmatrix} 10 & 1 & 0.1 \\ 1 & 0.1 & 0.01 \\ 0.1 & 0.01 & 0.001 \end{pmatrix}$$

• EFT-optimized analysis strategy expected to give weaker limits on couplings in LQ interpretation.

Mário José Sousa (INFN-GE)



• Control region (CR) built with  $\mu^{\pm}\mu^{\mp}$  events to estimate the fake- $\tau$  contribution.

- Scale factor extracted standalone.
- CR with  $t\bar{t}(\rightarrow e\mu)$  events with additional non-prompt (NP)  $\mu$  to estimate the NP background in the signal region (SR).
- *H*<sub>T</sub> (≡ ∑<sub>x</sub> |*p*<sub>T</sub> <sup>x</sup>|) distributions from CR*tt*µ and SR used in a binned profile-likelihood fit.
   *x* = { lepton,jets }
- Statistical dominated analysis.
- Leading systematic uncertainties stem from  $t\bar{t}X$  and diboson processes modelling.



• SM states that FCNC processes, due to the GIM mechanism, are:

- forbidden at tree level.
- very much suppressed at the one-loop level and higher orders.
- FCNC decays of the top quark are extremely rare in the SM (Phys. Rev. D 100 (2019) 015003):
  - $B(t \to cH) = 4.2 \times 10^{-15}$ .
  - $\mathcal{B}(t \to uH) = 3.7 \times 10^{-17}$ .
  - Observations of such processes would constitute a clear signal of BSM physics.
- Previous ATLAS limits are:

| Publication                    | JHEP06 (2023) 155             | JHEP07 (2023) 199      | JHEP06 (2014) 008     |
|--------------------------------|-------------------------------|------------------------|-----------------------|
| H decay                        | $H \rightarrow \tau^+ \tau^-$ | $H  ightarrow b ar{b}$ | $H 	o \gamma \gamma$  |
| $\mathcal{B}(t  ightarrow cH)$ | $ < 9.4 	imes 10^{-4} $       | $< 12.0 	imes 10^{-4}$ | $< 7.8 	imes 10^{-3}$ |
| $\mathcal{B}(t  ightarrow uH)$ | $ $ $< 6.9 	imes 10^{-4}$     | $< 7.7 	imes 10^{-4}$  | $< 7.8 	imes 10^{-3}$ |

#### Flavour-changing neutral-currents: update



- Search for tqH coupling with diverse Higgs boson decays.
- Search in  $H \rightarrow \gamma \gamma$  split primarily based on the decay of the W boson: had 0 charged lepton and at least 3 jets.
  - lep 1 charged lepton and at least 1 jet.
- Search with Higgs boson decaying into multilepton final states:
- 2LSS 2 same charged leptons.
  - 3L 3 charged leptons with  $|\sum q(\ell_i)| = 1$ .
- Both analyses search for FCNC in production and decay of the top quark.
- The observed data is interpreted within the EFT framework.

 $\bullet$  The EFT Lagrangian ( $\mathcal{L}_{\rm EFT})$  for the tqH process can be written:

$$\mathcal{L}_{\text{EFT}} = \mathcal{L}_{\text{SM}} + \sum_{q=u,c} \left[ \frac{C_{u\phi}^{qt}}{\Lambda^2} O_{u\phi}^{qt} + \frac{C_{u\phi}^{tq}}{\Lambda^2} O_{u\phi}^{tq} \right]$$

- with 4 FCNC operators contributing at tree level associated to 4 Wilson coefficients.
- Notation can be found in backup.
- The top quarks are produced unpolarized in  $t\bar{t}$  and the Higgs boson is a scalar particle:
  - no kinematic differences expected between  $\mathcal{O}_{u\phi}^{tq}$  and  $\mathcal{O}_{u\phi}^{qt}$ .
- In the phase space considered for the single-top production, results from simulation also showed negligible differences.
- The average of the two Wilson coefficients is taken per q = u, c:

$$C_{u\phi}^{tq,qt} = rac{C_{u\phi}^{tq} + C_{u\phi}^{qt}}{2}$$



- FCNC decay top:  $m_{\gamma\gamma j} \in [152, 190]$  GeV.
- SM decay top:  $m_{jjj} \in [120, 220]$  GeV.
- c, ¢: jet from FCNC top pass/don't pass charm-tagging.
- To improve the sensitivity these categories are fed to a boosted decision tree (BDT).
- Specific region targeting the  $pp \rightarrow tH$  production.
- Profile likelihood used to fit  $\mathcal{B}$  in the  $m_{\gamma\gamma}$  distribution, assuming a single coupling: either *tcH* or *tuH*.
- Main systematics result from the non-resonant background from the Higgs boson  $m_{\gamma\gamma}$  side-band.

#### Flavour-changing neutral-currents $t \rightarrow qH(\rightarrow \gamma\gamma)$



## FCNC $t \rightarrow qH$ with H multilepton decay

- In both lepton final states, the  $H \rightarrow WW$  decay dominates.
- This analysis also splits between decay/production based on  $N_{\rm jets}$ : 4 SR.
- 4 CRs to constrain the background from fake leptons (heavy flavour).
- 3 CRs to constrain the background from  $t\bar{t}V$ .
- Neutral network (NN) used to separate signal from background.
- Heavy flavour background modelling dominates the systematic uncertainty.



• Fits (*tHu* and *tHc*) to extract the signal strength and normalization of main backgrounds.

| Process         | <i>tHu</i> fit  | tHc fit       |
|-----------------|-----------------|---------------|
| HF-decay e      | $1.05\pm0.24$   | $1.02\pm0.23$ |
| HF-decay $\mu$  | $0.94 \pm 0.18$ | $0.92\pm0.18$ |
| $VV3\ell + b/c$ | $1.41 \pm 0.23$ | $1.37\pm0.24$ |
| tīW             | $1.15\pm0.14$   | $1.19\pm0.14$ |
| $t\bar{t}Z$     | $1.16\pm0.11$   | $1.17\pm0.11$ |



#### FCNC $t \rightarrow uH$ with H multilepton decay

#### arXiv:2404.02123 [hep-ex]



#### FCNC summary plots as of April 2024

#### $t \rightarrow Xq$



 $t \rightarrow Xc$ 

 $t \rightarrow X u$ 

## Summary

- The top quark touchstone gives us already good Standard Model measurements.
- Additionally, collisions in the ATLAS detector are trying to understand it can probe physics beyond it.
- Today, a selection of this last year's analysis:
  - Charged-lepton-flavour violation: March 11<sup>th</sup> arXiv:2403.06742 [hep-ex]
  - ► FCNC  $t \rightarrow qH$  with  $H \rightarrow \gamma\gamma$ : September 22<sup>nd</sup> JHEP 12 (2023) 195
  - ► FCNC t → qH with multilepton H decay: April 2<sup>nd</sup> arXiv:2404.02123 [hep-ex]
- Full list of ATLAS Collaboration publications: <u>link</u>.



• An exciting time awaits as we anticipate what Run-3 of LHC data collection might reveal about the top-quark sector.

#### Backup: cLFV EFT operator and degrees of freedom

Table 1: EFT operator basis and degrees of freedom. In the convention used, I and q are the left-handed lepton and quark doublets, respectively, while u and e are the right-handed up-type quark and charged-lepton singlets, respectively. The indices  $i, j = \{1, 2, 3\}$  represent the lepton flavour generations and  $k, l = \{1, 2, 3\}$  represent the quark flavour generations, respectively. The Pauli matrices are denoted by  $\sigma^I, \varepsilon = i\sigma^2$  is the antisymmetric SU(2)tensor and  $\sigma^{\mu\nu} = \frac{i}{2} [\gamma^{\mu}, \gamma^{\nu}]$  and  $\gamma^{\mu}$  are the Dirac matrices.

| Operator              | Interaction                                                                  | Lorentz Structure |
|-----------------------|------------------------------------------------------------------------------|-------------------|
| $O_{ m lq}^{1(ijkl)}$ | $(\bar{l}_i\gamma^\mul_j)(\bar{q}_k\gamma_\muq_l)$                           | Vector            |
| $O_{ m lq}^{3(ijkl)}$ | $(\bar{I}_i \gamma^\mu \sigma^I I_j)(\bar{q}_k \gamma_\mu \sigma_I q_l)$     | Vector            |
| $O_{eq}^{(ijkl)}$     | $(\bar{e}_i\gamma^\mue_j)(\bar{q}_k\gamma_\muq_l)$                           | Vector            |
| $O_{lu}^{(ijkl)}$     | $(\bar{l}_i\gamma^\mul_j)(\bar{u}_k\gamma_\muu_l)$                           | Vector            |
| $O_{\rm eu}^{(ijkl)}$ | $(\bar{e}_i \gamma^{\mu} e_j) (\bar{u}_k \gamma_{\mu} u_l)$                  | Vector            |
| $O_{lequ}^{1(ijkl)}$  | $(\bar{l}_i e_j) \varepsilon(\bar{q}_k u_l)$                                 | Scalar            |
| $O_{lequ}^{3(ijkl)}$  | $(\bar{I}_i \sigma^{\mu\nu} e_j) \varepsilon(\bar{q}_k \sigma_{\mu\nu} u_l)$ | Tensor            |

#### Backup: cLFV event selection and systematic

| Preselection:<br>Number of leptons<br>Leading muon / ele<br>Trigger matching<br>Sum of lepton charg | $\begin{array}{c c} ctron \ p_{\rm T} \\ es \end{array} \begin{array}{c} l \\ \geq \end{array}$ | $N_{\ell} = 3, p_{\rm T} > 10$<br>$p_{\rm T} > 2$<br>1 trigger-match<br>$\sum q_i$ | 0 GeV, $ \eta  < 2.5$<br>27 GeV<br>ed muon / electron<br>= $\pm 1$ | Pre-fit impact on $\mu$ :<br>$\square \theta = \hat{\theta} + \Delta \theta \_ \hat{\theta} = \hat{\theta} - \Delta \theta$<br>Post-fit impact on $\mu$ :<br>$\square \theta = \hat{\theta} + \Delta \hat{\theta} \_ \hat{\theta} = \hat{\theta} - \Delta \hat{\theta}$<br>— Nuis. Param. Pull<br>Signal (p) parton shower<br>$t\overline{t}W$ cross-section<br>$\gamma$ (SR bin 2)<br>WZ cross-section | Δμ<br>-4-3-2-101234<br><b>ATLAS</b><br>√s = 13 TeV, 140 fb <sup>-1</sup> |
|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
|                                                                                                     | SR                                                                                              | CRT                                                                                | <b>CR</b> <i>ttµ</i>                                               | tłW QCD generator<br>tłZ PS                                                                                                                                                                                                                                                                                                                                                                             |                                                                          |
| Lepton flavour                                                                                      | <u>2μ</u>                                                                                       | $1\tau_{\rm had}$                                                                  | $2\mu 1e \ (\ell_3 = \mu)$                                         | $WZ \mu_R/\mu_F$<br>$t\bar{t}Z$ ISR                                                                                                                                                                                                                                                                                                                                                                     |                                                                          |
| N <sub>jets</sub>                                                                                   | ≥ 1                                                                                             | $\geq 2$                                                                           | ≥ 1                                                                | Tau RNN ID eff. syst                                                                                                                                                                                                                                                                                                                                                                                    |                                                                          |
| $N_{b-tags}$                                                                                        | 1                                                                                               | 1                                                                                  | $\leq 2$                                                           | Tau eBDT True Had Tau eff.                                                                                                                                                                                                                                                                                                                                                                              |                                                                          |
| $\tau_{\rm had} p_{\rm T}$                                                                          | > 20 GeV                                                                                        | > 20 GeV                                                                           | -                                                                  | tī NLO (CRtīµ)                                                                                                                                                                                                                                                                                                                                                                                          |                                                                          |
| Muon $p_{\rm T}$                                                                                    | > 15 GeV                                                                                        | > 15 GeV                                                                           | > 10 GeV                                                           | tt∠ cross-section                                                                                                                                                                                                                                                                                                                                                                                       |                                                                          |
| Higher $p_{\rm T}$ muon                                                                             | Tight                                                                                           | Tight                                                                              | Tight                                                              | Muon isolation eff. (syst)                                                                                                                                                                                                                                                                                                                                                                              |                                                                          |
| Lower $p_{\rm T}$ muon                                                                              | Tight                                                                                           | Tight                                                                              | Loose                                                              | $t\overline{t}$ h <sub>damp</sub>                                                                                                                                                                                                                                                                                                                                                                       |                                                                          |
| Muon charges                                                                                        | ss                                                                                              | os                                                                                 | _                                                                  | Muon identification eff. (syst)                                                                                                                                                                                                                                                                                                                                                                         |                                                                          |
| $m_{\mu\nu}^{OS}$                                                                                   | _                                                                                               | _                                                                                  | >15 GeV                                                            | γ (SK bin T)<br>Luminositv                                                                                                                                                                                                                                                                                                                                                                              |                                                                          |
| $ m_{\rm os}^{\rm OS} - M_Z $                                                                       | _                                                                                               | <10 GeV                                                                            | >10 GeV                                                            | <i>k</i> (ΝΡμ)                                                                                                                                                                                                                                                                                                                                                                                          |                                                                          |
| $3p_{\rm T}^{\mu_1} + \sum m_{\ell\ell}^{\rm OS}$                                                   | -                                                                                               | -                                                                                  | < 400 GeV                                                          | tīH PS                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                          |
|                                                                                                     |                                                                                                 |                                                                                    |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                         | (Ê-0.)/A0                                                                |

Dro fit impost on ut

#### Backup: FCNC EFT operator

The FCNC interactions are introduced using an effective field theory (EFT) framework, which is used for indirect searches for new physics [29]. Here the SM is regarded as a low-energy approximation of an ultraviolet complete theory containing new particles, whose masses are characterised by an energy scale  $\Lambda = 1$  TeV. The new physics contributions are parameterised in terms of operators with mass dimension greater than four containing only the SM fields, scaled by dimensionless Wilson coefficients and inverse powers of  $\Lambda$ . In the case where only the *tHu* and *tHc* interactions are considered, the relevant operators are

$$O_{u\phi}^{qt} = \left(\phi^{\dagger}\phi - \frac{v^2}{2}\right)(\bar{q}_L t_R)\tilde{\phi} \qquad \qquad O_{u\phi}^{tq} = \left(\phi^{\dagger}\phi - \frac{v^2}{2}\right)(\bar{t}_L q_R)\tilde{\phi}, \tag{1}$$

where q corresponds to an up or charm quark, depending on the FCNC coupling. The index u is the coupling to any up-type quark, t is the top-quark,  $\phi$  denotes the Higgs boson field with v corresponding to the absolute value of its vacuum expectation value. The two left-handed quark doublet fields are  $\bar{q}_L$  and  $\bar{t}_L$ , with  $q_R$  and  $t_R$  being the corresponding right-handed singlets. The operators are scaled with Wilson coefficients  $C_{u\phi}^{qt}$  and  $C_{u\phi}^{tq}$ , and  $1/\Lambda^2$  to give the relevant Lagrangian:

$$\mathcal{L}_{\text{EFT}} = \mathcal{L}_{\text{SM}} + \sum_{q=u,c} \left[ \frac{C_{u\phi}^{qt}}{\Lambda^2} O_{u\phi}^{qt} + \frac{C_{u\phi}^{tq}}{\Lambda^2} O_{u\phi}^{tq} \right].$$
(2)

#### Backup: Event selection and systematic uncertainty for $H \rightarrow \gamma \gamma$ analysis

# Hadronic selection



#### Leptonic selection



| Source                                                                                         | relative impact (%) |
|------------------------------------------------------------------------------------------------|---------------------|
| Experimental                                                                                   |                     |
| Photon energy resolution                                                                       | 1.5                 |
| Photon identification                                                                          | 0.4                 |
| Luminosity, pile-up modelling                                                                  | 0.3                 |
| Jet energy scale and resolution, flavour tagging                                               | < 0.2               |
| Theoretical                                                                                    |                     |
| Normalisation $(\sigma(pp \rightarrow t\bar{t}, tH), \mathcal{B}(H \rightarrow \gamma\gamma))$ | 1.1                 |
| Parton showering model                                                                         | 0.8                 |
| $m_t$ value, NLO generator for $pp \rightarrow tH$                                             | 0.5                 |
| Resonant background                                                                            | 0.5                 |
| Non-resonant background                                                                        | 2.3                 |

Searches for BSM in top final states in ATLAS

### Backup: Event selection for ML analysis

| $\begin{array}{c c} \hline Preselection \\ \hline N_{jets} & \geq 1 \\ \hline N_{b-tags} & \geq 1 \\ p_{T}(jet) & \geq 20 \text{ GeV} \\ p_{T}(\ell) & \geq 10 \text{ GeV} \\ p_{T}(\ell_{0}) & \geq 28 \text{ GeV} \\ \hline \hline 2\ell \text{SS} & 3\ell \end{array}$ |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{ll} N_{\rm jets} & \geq 1 \\ N_{b\text{-tags}} & \geq 1 \\ p_{\rm T}({\rm jet}) & \geq 20  {\rm GeV} \\ p_{\rm T}(\ell) & \geq 10  {\rm GeV} \\ p_{\rm T}(\ell_0) & \geq 28  {\rm GeV} \\ \end{array}$                                                     |
| $\begin{array}{ll} N_{b\text{-tags}} & \geq 1 \\ p_{\mathrm{T}}(\mathrm{jet}) & \geq 20  \mathrm{GeV} \\ p_{\mathrm{T}}(\ell) & \geq 10  \mathrm{GeV} \\ p_{\mathrm{T}}(\ell_0) & \geq 28  \mathrm{GeV} \end{array}$                                                      |
| $\begin{array}{l} p_{\mathrm{T}}(\mathrm{jet}) &\geq 20  \mathrm{GeV} \\ p_{\mathrm{T}}(\ell) &\geq 10  \mathrm{GeV} \\ p_{\mathrm{T}}(\ell_0) &\geq 28  \mathrm{GeV} \\ \hline \\ \hline \\ 2\ell \mathrm{SS} & 3\ell \end{array}$                                       |
| $p_{\rm T}(\ell) \ge 10  {\rm GeV}$ $p_{\rm T}(\ell_0) \ge 28  {\rm GeV}$ $2\ell {\rm SS}  3\ell$                                                                                                                                                                         |
| $p_{\rm T}(\ell_0) \ge 28  {\rm GeV}$ $2\ell {\rm SS}  3\ell$                                                                                                                                                                                                             |
| 2ℓSS 3ℓ                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                           |
| $N_{\ell} = 2 = 3$                                                                                                                                                                                                                                                        |
| $\sum q(\ell_i) = \pm 2e = \pm 1e$                                                                                                                                                                                                                                        |

#### Signal region

|                     | SR2ℓDec               | $SR2\ell Prod$        | SR3ℓDec               | SR3ℓProd                |
|---------------------|-----------------------|-----------------------|-----------------------|-------------------------|
| Njets               | $\geq 4$              | ≤ 3                   | ≥ 3                   | $\leq 2$                |
| N <sub>b-tags</sub> | = 1                   | = 1                   | = 1                   | = 1                     |
| $p_{T}(\ell_{1})$   | $\geq 12  \text{GeV}$ | $\geq 16  \text{GeV}$ | $\geq 20  { m GeV}$   | $\geq 20  \mathrm{GeV}$ |
| $p_T(\ell_2)$       | -                     | -                     | $\geq 16  \text{GeV}$ | $\geq 16  \text{GeV}$   |
| $ m(e, e) - m_Z $   | $\geq 10\text{GeV}$   | $\geq 10\text{GeV}$   | -                     | -                       |

#### Control region HF

|                   | $CR2\ell HFe$ | $\mathrm{CR}2\ell\mathrm{HF}\mu$ | $CR3\ell HFe$         | $CR3\ell HF\mu$       |
|-------------------|---------------|----------------------------------|-----------------------|-----------------------|
| N <sub>jets</sub> | ≤ 3           | ≤ 3                              | $\geq 1$              | $\geq 1$              |
| Nb-tags           | $\geq 1$      | $\geq 1$                         | = 1                   | = 1                   |
| $\ell_0$ flavour  | μ             | μ                                | -                     | -                     |
| $\ell_1$ flavour  | е             | μ                                | -                     | -                     |
| $p_T(\ell_1)$     | < 16  GeV     | < 16 GeV                         | $\geq 20  \text{GeV}$ | $\geq 20  \text{GeV}$ |
| $\ell_2$ flavour  | -             | -                                | е                     | μ                     |
| $p_T(\ell_2)$     | -             | -                                | < 16  GeV             | < 16  GeV             |

#### Control region $t\bar{t}V$

|                          | $CR2\ell t\bar{t}V$   | $CR3\ell t\bar{t}W$   | $CR3\ell t\bar{t}Z$   |
|--------------------------|-----------------------|-----------------------|-----------------------|
| Njets                    | ≥ 4                   | $\geq 2$              | $\geq 2$              |
| $N_{b-tags}$             | = 2                   | = 2                   | = 2                   |
| $\ell_0$ flavour         | μ                     | -                     | -                     |
| $p_{\mathrm{T}}(\ell_1)$ | $\geq 18  \text{GeV}$ | $\geq 20  \text{GeV}$ | $\geq 20  \text{GeV}$ |
| $p_{\mathrm{T}}(\ell_2)$ | _                     | $\geq 16  \text{GeV}$ | $\geq 16\text{GeV}$   |
| $ m(\ell^+,\ell^-)-m_Z $ | -                     | $\geq 10{\rm GeV}$    | $< 10  \mathrm{GeV}$  |

#### Backup: List of NN variables for ML analysis: SR3 $\ell$

| Variable                                            | Description                                                                                         |
|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| $m(\ell_{OS}, \ell_{SS,1})$                         | Invariant mass of the opposite-charge and the subleading- $p_T$ same-charge lepton                  |
| $m(\ell_{\rm OS},\ell_{\rm SS,0})$                  | Invariant mass of the opposite-charge and the leading- $p_{\rm T}$ same-charge lepton               |
| $m(\ell_t, b_t)$                                    | Invariant mass of the $b$ -tagged jet and the lepton assigned to the top-quark decay                |
| Njets                                               | Number of jets                                                                                      |
| $H_T(jets)$                                         | Scalar sum of the $p_T$ of all jets                                                                 |
| $m(t_{\rm SM},H)$                                   | Invariant mass of the RJR top quark decaying via $t \to Wb$ and the Higgs boson                     |
| $\Delta R(\ell_{\rm SS,0},\ell_{\rm SS,1})$         | Angular separation between the leading and subleading- $p_{\rm T}$ same-charge lepton               |
| $m(\ell_{H,0},\ell_{H,1})$                          | Invariant mass of the two leptons assigned to the Higgs-boson decay                                 |
| $m(b$ -jet, $\ell_{SS,0})$                          | Invariant mass of the b-tagged jet and the leading-pT same-charge lepton                            |
| $\Delta R(\ell_t, b_t)$                             | Angular separation between the $b\mbox{-tagged}$ jet and the lepton assigned to the top-quark decay |
| $p_{\rm T}(t_{\rm SM})$                             | Transverse momentum of the RJR top quark decaying via $t \rightarrow Wb$                            |
| $p_{\rm T}(b\text{-jet})$                           | Transverse momentum of the b-tagged jet                                                             |
| $\eta(\ell_{\rm SS,1})$                             | Pseudorapidity of the subleading- $p_T$ same-charge lepton                                          |
| $p_T(\ell_{SS,1})$                                  | Transverse momentum of the subleading- $p_T$ same-charge lepton                                     |
| $m(H,\ell_{\rm SS,1})$                              | Invariant mass of the RJR Higgs boson and the subleading- $p_{\rm T}$ same-charge lepton            |
| $\Delta R(t_{\rm SM},\ell_{\rm OS})$                | Angular separation between the RJR top quark decaying via $t \to Wb$ and the opposite-charge lepton |
| $\Delta R(H,\ell_{\rm OS})$                         | Angular separation between the RJR Higgs boson and the opposite-charge lepton                       |
| $\Delta R(\ell_{\mathrm{OS},\ell_{\mathrm{SS},1}})$ | Angular separation between the opposite-charge and the subleading- $p_{\rm T}$ same charge lepton   |

|   |            | - |
|---|------------|---|
| ↑ | Production |   |

 $\mathsf{Decay} \to$ 

| Variable                                  | Description                                                                                                                     |  |  |  |  |
|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| $m(\ell_{\rm OS},\ell_{\rm SS,1})$        | Invariant mass of the opposite-charge and the subleading- $p_{\rm T}$ same-charge lepton                                        |  |  |  |  |
| $m(\ell_{\rm OS},\ell_{\rm SS,0})$        | Invariant mass of the opposite-charge and the leading- $p_{\rm T}$ same-charge lepton                                           |  |  |  |  |
| NICE $m(\ell_t, b_t)$                     | Invariant mass of the $b\mbox{-tagged}$ jet and the lepton assigned to the top-quark decay with a fulfilled NICE Reco condition |  |  |  |  |
| $H_T(jets)$                               | Scalar sum of the $p_T$ of all jets                                                                                             |  |  |  |  |
| $m(b$ -jet, $\ell_{SS,0})$                | Invariant mass of the b-tagged jet and the leading-pT same-charge lepton                                                        |  |  |  |  |
| $m(t_{\rm SM},H)$                         | Invariant mass of the RJR top quark decaying via $t \to Wb$ and the RJR Higgs boson                                             |  |  |  |  |
| $m(\ell_{H,0},\ell_{H,1})$                | Invariant mass of the two leptons assigned to the Higgs-boson decay                                                             |  |  |  |  |
| $m(H,\ell_{\rm SS,1})$                    | Invariant mass of the RJR Higgs boson and the subleading- $p_{\rm T}$ same-charge lepton                                        |  |  |  |  |
| $\Delta R(b\text{-jet}, t_{SM})$          | Angular separation between the <i>b</i> -tagged jet and the RJR top quark decaying via $t \rightarrow Wb$                       |  |  |  |  |
| $m(\ell_0,t_{\rm SM})$                    | Invariant mass of the leading- $p_{\rm T}$ lepton and the RJR top quark decaying via $t \to Wb$                                 |  |  |  |  |
| $p_{\rm T}(t_{\rm SM})$                   | Transverse momentum of the RJR top quark decaying via $t \rightarrow Wb$                                                        |  |  |  |  |
| $m(t_{\rm SM},\ell_{\rm SS,1})$           | Invariant mass of the RJR top quark decaying via $t \to Wb$ and the subleading- $p_{\rm T}$ same-charge lepton                  |  |  |  |  |
| $\Delta R(\ell_{\rm OS},\ell_{\rm SS,0})$ | Angular separation between the opposite-charge and the leading- $p_{\rm T}$ same-charge lepton                                  |  |  |  |  |
| $p_{\rm T}(\ell_{\rm OS})$                | Transverse momentum of the opposite-charge lepton                                                                               |  |  |  |  |
| $m(b-jet, \ell_{OS})$                     | Invariant mass of the b-tagged jet and the opposite-charge lepton                                                               |  |  |  |  |
| m(b-jet, $H)$                             | Invariant mass of the b-tagged jet and the RJR Higgs boson                                                                      |  |  |  |  |
| $p_T(\ell_2)$                             | Transverse momentum of the third-leading-pT lepton                                                                              |  |  |  |  |
| $\eta(\ell_0)$                            | Pseudorapidity of the leading- $p_T$ lepton                                                                                     |  |  |  |  |
| $m(W_t)$                                  | Mass of the RJR W boson from the top-quark decay                                                                                |  |  |  |  |
| $m(\ell_t, b_t)$                          | Invariant mass of the b-tagged jet and the lepton assigned to the top-quark decay                                               |  |  |  |  |
|                                           |                                                                                                                                 |  |  |  |  |

#### Backup: List of NN variables for ML analysis: SR2 $\ell$ SS

| Variable Description          |                                                                                                                 | Variable                                   | Description                                                                                                 |
|-------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| $m(\ell_1, H)$                | Invariant mass of the subleading-pT lepton and the RJR Higgs boson                                              | H <sub>T</sub> (jets)                      | Scalar sum of the $p_T$ of all jets                                                                         |
| Njets                         | Number of jets                                                                                                  | $m(\ell_0, b\text{-jet})$                  | Invariant mass of the leading-pT lepton and the b-tagged jet                                                |
| m(b-jet, t <sub>SM</sub> )    | Invariant mass of the <i>b</i> -tagged jet and the RJR top quark decaying via $t \rightarrow Wb$                | $\Delta R(\ell_1, H)$                      | Angular separation between the subleading- $p_T$ lepton and the RJR Higgs boson                             |
| m(H, b-jet)                   | Invariant mass of the RJR Higgs boson and the b-tagged jet                                                      | $p_T(\ell_1)$                              | Transverse momentum of the subleading- $p_T$ lepton                                                         |
| $p_{\rm T}(W_{\rm had})$      | Transverse momentum of the hadronically decaying RJR W boson                                                    | $m(jets_{min\Delta R})$                    | Invariant mass of the two non-b-tagged jets with the smallest $\Delta R$                                    |
| $\Delta R(\ell_1,H)$          | Angular separation between the subleading- $p_{\rm T}$ lepton and the RJR Higgs boson                           | m(t <sub>SM</sub> , l-jet <sub>0</sub> )   | Invariant mass of the RJR top quark decaying via $t \rightarrow Wb$ and the leading- $p_T$ non b tagged int |
| $m(W_{had})$                  | Mass of the hadronically decaying RJR W boson                                                                   | $\mathbf{r}(t_i)$                          | Pseudoranidity of the subleading.p. lenton                                                                  |
| $p_T(\ell_1)$                 | Transverse momentum of the subleading-pT lepton                                                                 |                                            | Angular separation between the leading- $p_{m}$ lepton and the subleading- $p_{m}$ non- $b_{m}$             |
| $\eta(\ell_1)$                | Pseudorapidity of the subleading- $p_T$ lepton                                                                  | $\Delta R(\ell_0, l-jet_1)$                | Angular separation between the leading- $p_T$ report and the subleading- $p_T$ non- $v$ -<br>tagged jet     |
| $\Delta R(H,W_t)$             | Angular separation between the RJR Higgs boson and the RJR W boson from the top-quark decay                     | $m(\ell_1, l\text{-jet}_0)$                | Invariant mass of the subleading-pT lepton and the leading-pT non-b-tagged jet                              |
|                               |                                                                                                                 | $m(\ell_0, l\text{-jet}_0)$                | Invariant mass of the leading-pT lepton and the leading-pT non-b-tagged jet                                 |
| $\Delta R(\ell_0, \ell_1)$    | Angular separation between leading and subleading- $p_T$ lepton                                                 | $\Delta R(\ell_0, l-iet_2)$                | Angular separation between the leading- $p_{\rm T}$ lepton and the third-leading- $p_{\rm T}$ non-b-        |
| $m(\ell_1, b\text{-jet})$     | Invariant mass of the subleading- $p_{\rm T}$ lepton and the <i>b</i> -tagged jet                               | (0) 3.2/                                   | tagged jet                                                                                                  |
| η(b-jet)                      | Pseudorapidity of the b-tagged jet                                                                              | $\Delta R(\ell_1, l\text{-jet}_2)$         | Angular separation between the subleading-pT lepton and the third-leading-pT non-<br>b-tagged jet           |
| $\Delta R(\ell_0,t_{\rm SM})$ | Angular separation between the leading- $p_T$ lepton and the RJR top quark decaying<br>via $t \rightarrow Wb$   | m(t <sub>FCNC</sub> , l-jet <sub>0</sub> ) | Invariant mass of the RJR top quark decaying via $t \rightarrow Hq$ and the leading- $p_{\rm T}$            |
| $E_{\rm T}^{\rm miss}$        | Missing transverse momentum                                                                                     |                                            | non-b-tagged jet                                                                                            |
| $fl.(\ell_0)$                 | Flavour of the leading-pT lepton                                                                                | $m(\ell_1, l-jet_1)$                       | Invariant mass of the subleading-pT lepton and the subleading-pT non-b-tagged jet                           |
| $\eta(\ell_0)$                | Pseudorapidity of the leading- $p_T$ lepton                                                                     | $m(\ell_1, t_{\rm FCNC})$                  | Invariant mass of the subleading- $p_T$ lepton and the RJR top quark decaying via $t \rightarrow Hq$        |
| $p_T(\ell_0)$                 | Transverse momentum of the leading-pT lepton                                                                    | (W. W. )                                   | Invariant mass of the RJR W boson from the top-quark decay and the hadronically                             |
| $\Delta R(l_1, t_{\rm EM})$   | Angular separation between the subleading- $p_T$ lepton and the RJR top quark decaying                          | m(w <sub>1</sub> , whad)                   | decaying RJR W boson                                                                                        |
| $m(H, W_t)$                   | via $t \rightarrow Wb$<br>Invariant mass of the RJR Higgs boson and the RJR W boson from the top-quark<br>decay | $\Delta R(\ell_0, l\text{-jet}_0)$         | Angular separation between the leading- $p_T$ lepton and the leading- $p_T$ non-b-tagged jet                |
|                               |                                                                                                                 | $m(\ell_1, b\text{-jet})$                  | Invariant mass of the subleading- $p_T$ lepton and the <i>b</i> -tagged jet                                 |
| $\Delta R(\ell_1, W_t)$       | Angular separation between the subleading- $p_T$ lepton and the RJR W boson from the top-quark decay            | Njets                                      | Number of jets                                                                                              |
|                               |                                                                                                                 | m(H, b-jet)                                | Invariant mass of the RJR Higgs boson and the b-tagged jet                                                  |
| $m(t_0, H)$                   | invariant mass of the leading- $p_{\rm T}$ lepton and the KJK Higgs boson                                       | $H_T(\ell_0, \ell_1)$                      | Scalar sum of the $p_T$ of all leptons                                                                      |
| p <sub>T</sub> (b-jet)        | Transverse momentum of the b-tagged jet                                                                         | $p_T(\ell_0)$                              | Transverse momentum of the leading- $p_T$ lepton                                                            |
| ↑ Proc                        | duction $Decay \rightarrow$                                                                                     | $m(W_t, t_{\rm FCNC})$                     | Invariant mass of the RJR W boson from the top-quark decay and the RJR top quark decaying via $t \to Hq$    |

Mário José Sousa (INFN-GE)

Searches for BSM in top final states in ATLAS

#### Backup: Leading systematics uncertainties for ML analysis



0.05

1.5 2

1