Searches for New Physics with top @
quarks using the ATLAS detector QI!T@NST
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Search for new physics @

The Standard Model of Particle Physics — state-of-the-art theory ATLAS

probed to extreme precision!

+

So, are we done with particle physics?” Do we understand it all?
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Perhaps there is something lying beyond the standard model?

The top quark, as the most massive elementary particle with a special role in
electroweak symmetry breaking and unique decay properties, is crucial for testing

the Standard Model and exploring new physics.
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Top as a
probe for

physics at the
TeV scale

The top quark, as the most massive elementary particle with a special role in
electroweak symmetry breaking and unique decay properties, is crucial for testing

the Standard Model and exploring new physics.
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> ttMET: Examines top quark pairs with MET in t
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> ttMET: Examines top quark pairs with MET in

search of new SUSY and DM particles. p i

Additionally probes ttvv interactions (SMEFT) t - X1
> tcMET: Investigates top and charm quarks with 7 T K i i ~ X5

MET to search for non minimal-flavor violating L b

SUSY scenarios. g ¢ tic
> 4top with tt resonance: Searches for heavy, top- ¢ v

phillic resonances using events with four top

quarks. ; 1%

& t
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> ttMET: Examines top quark pairs with MET in
search of new SUSY and DM particles.
Additionally probes ttvv interactions (SMEFT)

> tcMET: Investigates top and charm quarks with

MET to search for non minimal-flavor violating

SUSY scenarios. | " tlc
g

> 4top with tt resonance: Searches for heavy, top- " v

phillic resonances using events with four top

quarks. ; 1%

| | & t

> W' to tb: Looks for new left-chiral and right-

chiral W' bosons decaying into top and bottom . b

quarks.

w'!
> Mono-top .
Presented by Anindya
v

> Dark Mesons Ghosh on Monday q ¢
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tt+Er™ — new and improved 1-lepton @

> Using an improved analysis strategy (inclusive event categories and Neural Networks), the 1L final state

is used to probe:

Stop Pair Production Simplified DM Production Contact Interactions
t 9
4
’ 4 g
L _ e 14
}“ik % 7
p
t g 5 3

> Range of masses for DM and SUSY models are targeted with two NNs (one for DM and one for SUSY).
> Special resolved and boosted top reconstruction strategy developed using DNNss.

» For the first time, ttVv operators are probed using the EFT framework.

JHEP03(2024)139
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tt+Er™ — new and improved 1-lepton
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The DNN is designed to be sensitive
to different signals with different NN

distributions simultaneously.
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Hﬂ production: T1 — tf:, bWi?

tt+Er™ — new and improved 1-lepton

ATLAS

EXPERIMENT
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The DNN is designed to be sensitive
to different signals with different NN

distributions simultaneously.

m(t,) [GeV]
Improvements in analysis strategy
help probe the compressed region.
— with the SAME dataset <
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tt+E+™° Combination

ﬂf;f1 production: ﬂ 3 tf: , bWﬁ?
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> [OL + 1L] combined limit — now the

best exclusion limit for stop pair
production in ATLAS with Run2 data!!
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NEW Combined Result

» Limits are set for simplified DM models.
> The new 1L result drives the ATLAS

combination result.

Simran Gurdasani, Uni-Freiburg

JHEP03(2024)139


https://link.springer.com/article/10.1007/JHEP03(2024)139
https://link.springer.com/article/10.1007/JHEP03(2024)139
https://link.springer.com/article/10.1007/JHEP03(2024)139

7% 1% time ever! — Interpretation for Contact Interaction

ATLAS

EXPERIMENT
» Using the same Neural Nets from the new 1L analysis, an interpretation is performed in the context of a search for

effective vector contact interactions between top quarks and all three generations of left-handed neutrinos.
— Initially motivated by flavor anomalies that are now reduced

— Remains a good probe of SM predictions at high energies

g t
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7% 1% time ever! — Interpretation for Contact Interaction

ATLAS

EXPERIMENT
» Using the same Neural Nets from the new 1L analysis, an interpretation is performed in the context of a search for

effective vector contact interactions between top quarks and all three generations of left-handed neutrinos.

— Initially motivated by flavor anomalies that are now reduced

Wilson coefficient Observed (Expected) Observed (Expected)
— Remains a good probe of SM predictions at high energies upper limit on /[V;;|/A lower limit on A for
; [TeV 1] |Vi;| = 4n [TeV]
£ - 1.59 (1.441-3%) 2.23 (247533)
" v 2 Mys < 1TeV 1.84 (1.661-82) 1.93 (2.142-39)
. T;j my; < 2TeV 1.62 (1.461%)) 2.18 (2.425%9)
E
v O 1.66 (1.52!-60) 2.13 (23323
<
& .
g ¢ g myy < 1 TeV 1.96 (1.80]-9%) 1.81 (1.973-83)
myy < 2TeV 1.70 (1.56;°5) 2.08 (2.2831))
1 _ _ _ _
Litvy = 2 [VLL(vy”PLv)(ty”PLr) + VLR(vyﬂPLv)(z‘y”PRt)] - 1.67 (1.531-:69) 2.12 (2.3233)
= My < 1 TeV 1.92 (1.781:%) 1.84 (1.99%19)
. , , E Mmyy < 2TeV 1.70 (1.5617%) 2.08 (2.27247y
> Assuming the Wilson coefficients to be |V;| = 4x, lower - L4 208
. . . o ' 1.63 2.60
limits on A at 95% confidence level range are set depending - 1.63 (1.49,750) 2.17 (2.38;71g)
. . . ) = ) : 1.89 2.25
on the chirality of the top quarks involved in the CI and o0 myy < 1TeV 186 (1.72/59) 191(2.067755)
o myy < 2TeV 1.66 (1.521-67) 2.13 (2.3323)

the sign of the Wilson coefficient.
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t C _I_ ETmiss

> tc+Er™* signature — probed for the 1
time ever at the LHC.

> Probes stop-pair production in non- -

minimal flavour SUSY scenario. S~

» Hadronic top decay is targeted — final p
state with many jets, large MET and c-
jet.

Simran Gurdasani, Uni-Freiburg arXiv:2402.12137
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jet.

> Different kinematic regions in the stop-neutralino mass plane are probed.
» Special multi-class DNN optimization for compressed region.
»> Top tagging also used — DNN for boosted tops

» Special c-tagging developed for the analysis!
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tc+Er™ — Signal Regions

> Each kinematic region has CRs used to control background processes, VRs ATLAS

EXPERIMENT

to validate the fit model and SRs that are enhanced in signal processes.

> Fach signal region is binned to increase sensitivity.
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tc+Er™ — Signal Regions

> Each kinematic region has CRs used to control background processes, VRs ATLAS

EXPERIMENT
to validate the fit model and SRs that are enhanced in signal processes.

> Fach signal region is binned to increase sensitivity.
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tc+Er™ — Signal Regions

> Each kinematic region has CRs used to control background processes, VRs ATLAS

EXPERIMENT

to validate the fit model and SRs that are enhanced in signal processes.

> Fach signal region is binned to increase sensitivity.
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» Some Signal Region bins have disagreements but all are within 2 sigma. Largest deficit ~ 1.8 sigma

> Overall, data agrees well with SM prediction.
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tc+Er™ — Model Dependent Fit

» The stop-neutralino plane shows exclusions for stop-quarks up to 800 GeV and neutralino AT L AS
masses up to 400 GeV. EXPERIMENT

> Best limits achieved for a maximal mixing scenario: BR(tcMET)=50%, BR(ttMET)=25%,
BR(ccMET)=25% — not probed before.

t, t, production, BR(t, - t7,) = BR(t, — ¢¥,) = 50%
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tc+Er™ — Model Dependent Fit

» The stop-neutralino plane shows exclusions for stop-quarks up to 800 GeV and neutralino AT L AS
masses up to 400 GeV. EXPERIMENT

> Best limits achieved for a maximal mixing scenario: BR(tcMET)=50%, BR(ttMET)=25%,
BR(ccMET)=25% — not probed before.

» Good sensitivity is retained even when varying BR.
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4-top with tt resonance

» Investigation of top-phillic vector resonances predicted by BSM extensions like composite ﬁl!ﬂﬁé

Higgs models. A new 7Z’ decaying to tt can be probed using:

L = city, (cos@Pp + sinf Pg) tZ™

b
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4-top with tt resonance

» Investigation of top-phillic vector resonances predicted by BSM extensions like composite &I!T“ﬁlé

Higgs models. A new 7Z’ decaying to tt can be probed using:

£ =y, os@P, HsndPx) 27
b g

b

» The models are probed for different values of jresonance mass (mz)J, fcoupling to top quarks (ci)§ and
chirality parameter (0)
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4-top with tt resonance

» Investigation of top-phillic vector resonances predicted by BSM extensions like composite &I!T“ﬁlé

Higgs models. A new 7Z’ decaying to tt can be probed using:

£ =y, os@P, HsndPx) 27
b g

b

» The models are probed for different values of jresonance mass (mz)J, fcoupling to top quarks (ci)§ and
chirality parameter (0)

» Final state where Z’ decays to two hadronically decaying boosted top quarks is investigated. Background is
estimated in control region data using functional fit with MC-based extrapolation functions.

»  For the other two top-quarks in the final state, the semi-leptonic decay channel is considered.

Simran Gurdasani, Uni-Freiburg EPJC-s10052-023-12318-9
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4-top with tt resonance - Results

» The variable of interest is the mj; distribution for which a specific background estimate AT LAS

strategy is developed. The results are analyzed using two approaches: APERIMENT

Simran Gurdasani, Uni-Freiburg EPJC-s10052-023-12318-9
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4-top with tt resonance - Results

» The variable of interest is the mj; distribution for which a specific background estimate AT LAS

strategy is developed. The results are analyzed using two approaches: APERIMENT

First — BumpHunter — minimizes model
dependence by searching for localized

excesses in the data.

> L L L L S R B ]
(0}
- - ATLAS ¢ Data 7
-~ -  Vs=13TeV,139 fb! Post-fit uncertainty on background
o . ) —— Post-fit background
~ 1 02 :_ 24 add-]ets, 24 b'JetS (SR) ______ Zl (1 '5 TeV, CI = 1.0’ 9 = ,”/2) _:
2 ~  Expected yield: 892 + 73 (scaled to 51 fb) .
qc) - Observed yield: 911 Most significant deviation -
> B interval (1.2-1.4 TeV) N
T L _
1 BumpHunter
10 global p-value = 0.59 =
100

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00
myy [TeV]

>  One of the two most sensitive SRs shown as an

example. No significant excesses are obtained.
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4-top with tt resonance - Results

» The variable of interest is the mj; distribution for which a specific background estimate AT LAS
EXPERIMENT

strategy is developed. The results are analyzed using two approaches:

First - BumpHunter — minimizes model Second — model-dependent approach — Limits on
dependence by searching for localized simplified model that predicts the production of top-
excesses in the data. philic spin-1 Z' resonances.
% [ A ] 31055_ 'I""I""I""I""I""I""I""_E
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> One of the two most sensitive SRs shown as an »  Small region is excluded for a specific Z’ model and
example. No significant excesses are obtained. upper limits on xsec are set for 1-3 TeV masses
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W’ — tb resonance

> W' — mediator of a new massive charged vector current. Appears in BSM scenarios, ATLAS
such as extra dimensions, strong dynamics or composite Higgs.
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W’ — tb resonance

> W' — mediator of a new massive charged vector current. Appears in BSM scenarios, ATLAS
such as extra dimensions, strong dynamics or composite Higgs.

> An Effective Lagrangian is used — range of left-handed and right-handed W’ masses are probed with

dependence on decay width.

»  For left-handed W's, the interference with the SM W-boson is specifically handled.
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W’ — tb resonance @

> W' — mediator of a new massive charged vector current. Appears in BSM scenarios, ATLAS
such as extra dimensions, strong dynamics or composite Higgs.

> An Effective Lagrangian is used — range of left-handed and right-handed W’ masses are probed with

dependence on decay width.

> For left-handed W’s, the interference with the SM W-boson is specifically handled.

Fully reconstruct tb system is used:

I

’ OL: large R jet 4+ small-R jet

> 1L: 1 lepton + neutrino (MET) + 2 small-R jets
1%
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W’ — tb resonance

> W' — mediator of a new massive charged vector current. Appears in BSM scenarios, ATLAS
such as extra dimensions, strong dynamics or composite Higgs.

> An Effective Lagrangian is used — range of left-handed and right-handed W’ masses are probed with

dependence on decay width.

> For left-handed W’s, the interference with the SM W-boson is specifically handled.

Fully reconstruct tb system is used:

I

’ OL: large R jet 4+ small-R jet

> 1L: 1 lepton + neutrino (MET) + 2 small-R jets
1%

» For the background estimation, Monte Carlo simulations with data-driven methods are used.

» The sensitivity is obtained by performing a profile-likelihood on the my, variable in control and signal

regions.
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W’ — tb resonance
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> For g’ /g = 1, right-handed (left-handed) W’ bosons are excluded up to 4.6 TeV (4.2 TeV).

> A scan in g’ /g is also performed for both chiralities.
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Conclusion @

» Top-quarks are used to probe many different BSM models using the full ATLAS Run-2 dataset.

> Boosted /resolved top taggers and c-taggers have played a crucial role in obtaining new results.

»> A combination of machine learning techniques, data-driven methods and MC simulations have been

developed to squeeze as much as possible out of the dataset.
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Conclusion @

» Top-quarks are used to probe many different BSM models using the full ATLAS Run-2 dataset.

> Boosted /resolved top taggers and c-taggers have played a crucial role in obtaining new results.

»> A combination of machine learning techniques, data-driven methods and MC simulations have been

developed to squeeze as much as possible out of the dataset.

> Both the tcMET (0L) and ttMET (1L) analyses have ~ 2 sigma excesses in independent regions of

phase space.

»> The 4-top process has been effectively probed for resonance searches for the first time since the full
Run-2 dataset makes it possible to study the SM 4-top final state.

»>  While the search for new bosons have not yielded significant excesses, the searches have been made as

model-independent possible, making it easier to explore a wider theory space.

Simran Gurdasani, Uni-Freiburg
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tt+Er™ (1L) c
Neural Net Strategy A@AS

- T EXPERIMENT

1. Top reconstruction with DNN| 2. Event Discrimination with DNN

> Exploit full kinematic properties of the events.

» Inputs - both top 4-vectors together with met, jet and lepton

High top Low top

4-vectors + high-level variables.
momentum

Resolved
region

Boosted ™
region

> For boosted (high pT) tops, large-R jets are

selected and a DNN developed by the jet group is

used to tag these jets as tops.

> For resolved (mid pT) tops, a dedicated NN is

developed to reconstruct the top pair from 3

leading jets (2 b-tagged) and 1 leading lepton in Two flavors of NNs are trained
the event. one for stop and one for DM



tt+Er" (1L) - NN Fit Strategy

Re-binned in relevant variable
[ mr(LEs™) * q(I) or yield ]

Used for the background fit

R [ ESARARR RN RARERY RRRNRRRRE RRRRE RN RN RN RS
O = -
2 - ATLAS Simulftion SM - /\
= - Preliminary —— T, T bWy y/ Sensitive to
O 1 5213 TeV different signals
= eSS I tt, Am(t,x) € [175,200] Gesg_ with different NN
> - High-E.7720 i, am(, 1) €1200,500] GeV v \ﬁtnbutlons
107 e s | tt, Am(x%)> 500 GeV .. :_ =
; - Changing S/B ratio
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1072 =— E lllllll I E = maximum sensitivity
1073 : : : | With a multi-bin fit
1 1 1 1 | 1 III 1 1 1 1 | 1 1 I:I L 1 | L 11 1 I L 1 | III L 11 1 I L 11 1]
0 0.1:02 03 04 0.3 0.6 0.7 0.8 09 1
: : ‘NN Output
i CR i VR ! SR

> —
o - - e Data —SM s
g - ATLAS Preliminary oW oL -
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__ ATLAS Preliminary
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=

0.9 1
NN QOutput

0.8
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tc+E+r™™ - Improved c-tagging @)

ctag + btag veto

c-tagging with b-veto technique
Step 1: DL1r — b-tagging algorithm
Step 2: DL1r. (modified DL1r) — c-tagging algorithm

DL1r c-tagger

DL1r b-tagger

very helpful to avoid a large rate of b-jets misidentified as c-jets
DL1r (b-tagger) is used at the 77% working point which corresponds to 20% fake c-tags.
Overall algorithm yields — 20% c-jet efficiency, with rejection factors of 29 for b-jets and 5 for light-jets

vy v vy

What remains is a high rate of fake hadronic taus ~ 15% — dealt with at later stage.

Simran Gurdasani, Uni-Freiburg 2/18



> Main Backgrounds: p

~ ttbar (semi-leptonic with missed lepton — fake MET)

W = qq

- W o— qq

> Main Backgrounds: Z+jets, W-jets

- Without a top tag, mainly V4jets

. . — 700
— 7 + jets where Z decays to neutrinos 2 n

S 600F

— W + jets where the jets look like a top “;5‘:’ -

E 500

> Orthogonality: Leading jet # b/c (ISR) 4005

/

Boosted signal region

Intermediate
signal region

remain where b and c jets are present

> Orthogonality: Leading jet = b/c

IIIIIIIIJlIIII|I{II|I\II|IIII‘\III

> Main Backgrounds:

9999090, 0

— Zjets where 7 decays to neutrinos

— Singletop [tW(tau — c)]

> Orthogonality: MT2 <= 450 GeV

m(t,) [GeV]

> Main Backgrounds: 4
w JoRY
— Zjets where Z decays to neutrinos e
t ’I
— Singletop [tW(tau — c)], [t-chan (t+j)] b b

> Orthogonality: MT2 > 450 GeV



tc+E1™ - Background Estimation — Regions ABC

» Common control regions for SRA and SRC — events with a boosted top + same SM

backgrounds:

— singletop: CRstAC (1L events) + Zjets: CRZAC (2L events)

» Control regions for SRB — events without boosted top:

— Z+jets: CRZB (2L events)

» One validation region for SRA, SRB, SRC

— Z+jets: VRZABC (0L events)

b
W — qq
t

> Main Backgrounds: Z-+jets, singletop

> Orthogonality: MT2 <= 450 GeV

) [GeV]

1
0

m(x

lIIIIIIII|IIII|IJlI|IlII|lIIIIlIII

P
800

by
1000 1200 1400
m(,) [GeV]

r

wv

|

S

a2 CRZAB CRZAC
o

£

I

@1 CRstAC
0

[ -

@]

o

-g 0 SRA SRC
=

=

0 1
DNN
Ntop

> Main Backgrounds: Z-+jets, W+jets

b
4 W qa

> Main Backgrounds: Z-jets, singletop

»  Orthogonality: MT2 > 450 GeV



tc+E+r™ - Analysis Strategy — Region D

Uses a multi-classifier DNN g
S 10°E-ATLAS Preliminary © i B Wets
> = -1 . .
Input layer Multiple hidden layers Output layer L 1 05 ESR:::: Leovs’t1.;3if fo . Z+1915 = S_Slngle-top
’ B others ttZ
Aéers’ N, c—jets? N b—jets 10* 70" MA,2,)=(500.525) 4%SMTotal ¢ Data

- mit,%})=(550,375)

Leading 6 Jets py., 17, Ag(j, EF'S)

2 Leading b and ¢ pr, 1, Ag(j, EX™S)

If\'\: | O
O.
O

%(/-,-.

Flavour

Missing objects OL

Data/SM
\\.§
i@\
\
\ -
»
3 -
¢
®
* .
.
&
s
s ]

[ ® ]

I R IR R |

0 L L
-2 —1.5 -1 —0.5 0 0.5 1 1 5 2

Q0000
QRS

e.g missing jet1, jetb, bjet2, cjet P NN signal score
) Each backgorund gets a CR: §
&2 CRD-Z
> Zjets CR for SRD (2L events) v
c
< > Ttbar CR for SRD (1L events) + (>=2b) g 1 CRD-tt  (>2b)
é el
€7w9>x ‘- > Wijets CR for SRD (1L events) + (==1b) 5 CRD-W (=)
a T o
o =
= >

» Low NN score validation region for SRD 0.0 05 0.75

— Validate all three backgrounds at once — VRD (0L Neural Net Signal Score
events)

> Main Backgrounds: ttbar, Z+jets, W+jets

Gap to limit signal contamination
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Control Regions

102

I I I I I T —]

ATLAS Preliminary f Zsjets =

10° Ys=13TeV, 139 fb™ B W-jets B Single-top _ |
h 1z =

Bkg.-only Post-fit B others H -

&% SM Total ¢ Data -

10

CRZB CRDZ

CRZAC I CRstAC IICRD’[’[?SO CRDtt1000 CRDtt1250 I CRDW

> A profile-likelihood fit is done yielding almost all normalization

factors consistent with 1

— Exception: singletop — this is quite common in the extreme

phase spaces in SUSY

— Three different ttbar normalization factors are considered
* CRD tt750 — tt1000 — tt1250 binned in Hr

* Highly correlated with increasing p'T ttbar events — need

increasing correction

Events

Significance

tc+E+™ - Results — Bkg-Only Fit

ATLAS

Validation Regions EXPERIMENT

10°

I I I I I
ATLAS Preliminary f Z+jets
10* Vs=13TeV, 139 b B Wijets I Single-top
— h (V4
= Bkg.-only Post-fit B others i
— &l SM Total ¢ Data
10° == "

@,

102

I IIIlII| IIIIIIlI| IIIIIlII|_LLI_|l|Jl

10

DO N
T[T

VRZABC VRD750 VRD1000 VRD1250 VRD1500 VRD1750

> Normalization factors (to correct the different
background processes) from Control Regions
extracted to corresponding Validation Regions

> Post-fit excesses in VRs < 2 sigma,

» These are not used in the fit, they are used to
validate the profile-likelihood fit in Control

Regions

Simran Gurdasani, Uni-Freiburg 2/18



4-top — Signal Region Definition

> 00— ] EXPERIMENT
- - ATLAS 1 ¢ Source region data |
g 500—_ Vs=13TeV, 139 fb~ N zu?i;:ﬁilp:?::gz[(x) _:
. _.\@ A Eigen-variation 1 N
: i . S 400[ Eigen-variation2 ]
% E E T E Eigen-variation 3 E
¥ 24| (>4a2b) | (>4a30) | (>4a24b) a1
E E 200f— —f
........................ L S 1oof— —f
. . b T e ‘s
5 s N I
3| (3a2b) | (3a,3b) | (3a>4b) § et b L
: : o -
' ' 100 125 150 175 200 225 250 275 3.00
myy [TeV]
> Source Region: used to estimate the
background from fit to data.
2 (28.,2b) (28.,3b) (23524b) > Validation Regions: used to check the
: : background estimation and profile likelihood fit
setup.
2 3 >4 > Regions most sensitive to
N b-jets signal used for profile likelihood fits.
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Mono-top

ATLAS

EXPERIMENT
» Investigates two simplified models for dark matter interpretation: scalar and vector mediator models and the

single production of a Vector-Like Top-quark.

> Analyzed signal processes dependent on various model parameters, including masses and couplings.

Vector DM mediator Scalar DM mediator Vector-like Top
q !
g v
M
q , v
b G b
q w+ &
5 g b
Parameters: mv, my, a, gy Parameters: mg, my, Aq, Vy Parameters: Kr, mr

> Events with a boosted top quark and large Er™* are used. An MVA strategy is used with three different BDTs

trained to separate background and from the three different signal models.

> A binned distribution of the BDT output score is used to get maximum sensitivity. Common control regions are
used for backgrounds: ttbar and V+jets.

Simran Gurdasani, Uni-Freiburg arXiv:2402.16561
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Vector DM mediator
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Scalar DM mediator
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Mono-top - 1D Results

105 15— I T T | T 1 1 | T T 1 1 T T T T 1| | T 1 T | 1 T | | T 1 T —Ef
- ATLAS —— Theory (NLO) ]
10'E (5_13Tev, 139 o — 95%C.L. Obs. Limt 5
- Single-T Production """ 95% C.L. Exp. Limit :

103 - Kr = 05, Singlet ‘:l 95% C.L. EXp tio _
= BR(T— Zt) = 0.25 [ ]95%C.L. Exp. +2c 3
10 =
10 E
ol | [

ATLAS

EXPERIMENT

Vector-like Top

11 1 | 11 1 | 11 1 11 1 l L1 1 | 1 1 1 | 11 1 I 11 1
1000 1200 1400 1600 1800 2000 2200 2400 2600 2800
m; [GeV]

mr < 1.8 TeV excluded

For Kt = 0.5 and
BR(T — Zt) = 25%

To provide more generalizable results, a multi-dimensional scan is performed in mass and

coupling parameters.

Simran Gurdasani, Uni-Freiburg
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Mono-top - 2D Projections

ATLAS

EXPERIMENT

X » Kinematics of this model are dependent on the mass and couplings used.
d
¢ A small grid of scalar DM models in mgy, my, Aq, yy are simulated and a re-
Aq ¢ C 1 : : . : .
a. - _y X - weighting procedure is applied for points not simulated using acceptance,
¢ \ i cross-section and a binned distribution in MET.
Accent c ) Shapes
cceplance ross-section A
g - - .
b - N ~ ~ i
; €target Utarget Ytarget
Wy = X X —
€reference  Oreference Y .ference
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Mono-top — BDT Score Fit
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Acceptance x efficiency [%]

Acceptance x efficiency [%]
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16 ATLAS Simulation R
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