

Halil Saka (University of Cyprus), on behalf of the CMS Collaboration

EXOCIC COPS anomalous interactions non-standard decays

The 12th Annual Large Hadron Collider Physics Conference

June 5, 2024

Top: late to party, first to BSM

Top quark is special:

 \rightarrow the heaviest SM mass (least constrained by low-energy measurements) \rightarrow strongly coupled to fields of the scalar sector

Top: late to party, first to BSM

Top quark is special: \rightarrow the heaviest SM mass (least constrained by low-energy measurements)

Resonant tops: heavy scalars CMS-PAS-B2G-23-006

This is the first time this signature is targeted at the LHC

CMS-PAS-B2G-23-006

• Triple-resonance structure: (dilepton), $(t\bar{t})$, and $(t\bar{t}$ +dilepton)

- ΔM and Z $p_{\rm T}$ wins over m($t\bar{t}$) and m($t\bar{t}Z$), once jet energy uncertainties are taken into account:
 - \rightarrow Z $p_{\rm T}$ is a clean, leptonic quantity, cut-off defined by ΔM
 - \rightarrow Correlations in m($t\bar{t}$) and m($t\bar{t}Z$) are used to reduce uncertainties
 - → Interference effects with SM ttZ is small in these variables (in comparison to experimental resolution)

Halil Saka (University of Cyprus)

CMS-PAS-B2G-23-006

• Closer look at the signal region bins:

- \rightarrow 2LOS signature is dominated by **irreducible** backgrounds.
- → Additional 40% on the DY+heavy flavor component (follows from 0/1 b-jet control region studies)

CMS-PAS-B2G-23-006

Limits on $\sigma \times BR$ (pb)

CMS-PAS-B2G-23-006

Same-sign tops: non-diagonal coupling **CMS-TOP-22-010** arXiv:2311.032

• Search for **new Yukawa couplings of the top quark** in models with additional Higgs bosons.

• Generalized 2HDM model:

- \rightarrow H/A are set to have sizable non-diagonal Yukawa couplings to quarks.
- \rightarrow This analysis targets ρ_{tu} or ρ_{tc} , one coupling at a time.
- \rightarrow Flavor changing neutral Higgs (**FCNH**) interactions are **absent for SM Higgs**, ex/ $t \rightarrow ch_{125}$ is suppressed ($BR \sim 10^{-15}$).
- **Same-sign top pair:** 2LSS signature with 3 jets (of which 2 are b-jets)
- Three different signal scenarios:
 - \rightarrow H is assumed to be **decoupled.**
 - \rightarrow **A** is assumed to be **decoupled**.
 - \rightarrow A and H are **near-mass-degenerate**, and accessible.

New "Higgs bosons" through same-sign top-quark production in association with an extra jet

 $pp \rightarrow tH \rightarrow ttu/ttc$

Same-sign tops: non-diagonal coupling

- 2LSS is the target signature, split by flavor, ee, $\mu\mu$, e μ .
 - \rightarrow **ttW** is the largest irreducible background.
 - $\rightarrow t\bar{t}$ contributions via nonprompt / e charge misID background, estimated via data driven methods.
- A dedicated **BDT training** is used to discriminate S from B.

Input variables ×10³ CMS Events/bin Nonprompt [4270] $\operatorname{CvsL}(j_a)$ tt [474] $CvsB(j_a)$ VBS [217] $\Delta R(j_a, j_b)$ g2HDM Signal $-\rho_{tu} = 1.0$ $m(j_a, j_b)$ •• ρ_{tc} = 1.0 (×5) $\Delta R(j_a, l_b)$ $m_{A} = 350 \text{ GeV}$ Interference $m(j_a, l_b)$ 2 $m_{A} - m_{H} = 50 \text{ GeV}$ $p_{\rm T}(\ell_a)$ $m(\ell_1, \ell_2, j_a)$ $m(\ell_1,\ell_2)$ d1.2 J/sqO 0.8 H_{T} $p_{\rm T}^{\rm miss}$ 0

arXiv:2311.0326

Same-sign tops: non-diagonal coupling **CMS-TOP-22-010** arXiv:2311.03261

Alternate scenario: **A and H is near-mass-degenerate**, ΔM =50 GeV.

 \rightarrow fully mass degenerate: interference effects suppress cross section .

Exotic tops at CMS: anomalous interactions, non-standard decays LHCP 2024

Same-sign tops: non-diagonal coupling **CMS-TOP-22-010** arXiv:2311.03261

$A \leftrightarrow H$ can be used interchangeably in the derived constraints.

(Similar 2D bounds are also set on scenarios without interference)

Exotic tops at CMS: anomalous interactions, non-standard decays | LHCP 2024

• Extending SM with a single spin-0 state ϕ , with couplings to top quark and charged leptons (e, μ , τ).

• Analysis targets dilepton resonances (ee/ $\mu\mu/\tau\tau$) in the mass range 15-350 GeV in multilepton events

 \rightarrow Substantial **misID lepton backgrounds** (estimated via data-driven methods).

 \rightarrow All lepton flavors are used (including **hadronic tau** leptons).

Exotic tops at CMS: anomalous interactions, non-standard decays | LHCP 2024

CMS-EXO-21-018 arXiv:2402.11098

- Multi-category, cut based analysis targeting 3/4-lepton events of ~all flavor combinations (lepton = e, μ , or hadronic τ) \rightarrow Most sensitive bins for the $t\bar{t}\phi$ signal: 3-lepton events with at least 1 b-tagged jet (a combination of channels contribute!)
- 6 scenarios are probed (ee/ $\mu\mu/\tau\tau$ scalar/pseudoscalar) for the $t\bar{t}\phi$ signal.
 - \rightarrow Analysis also targets $W\phi$ and $Z\phi$ signals (not shown, 18 additional scenarios).

Narrow $\mu\mu$ resonance

(ee behaves simila

CMS-EXO-21-018 arXiv:2402.11098

- - $\rightarrow \phi$ is assumed to couple to fermions only, proportional to their masses.

First direct bounds on dilaton-like (scalar) and axion-like (pseudoscalar) fermiophilic states.

 \rightarrow Sensitivity is dominated by $\tau\tau$ signal regions for masses above 30 GeV ($\mu\mu$ otherwise)

To conclude

- Three recent CMS results on "exotic tops":
- Resonant top signatures CMS-PAS-B2G-23-006 (03/2024)
- Same-sign top signatures CMS-TOP-22-010 / arXiv:2311.03261 (02/2024)
- Top associated production <u>CMS-EXO-21-018 / arXiv:2402.11098</u> (02/2024)
- Challenging signals at EWK scale
 - \rightarrow Run2 dataset is still delivering.
 - \rightarrow Run3 efforts have started, stay tuned!

Additional material

Halil Saka (University of Cyprus)

Exotic tops at CMS: anomalous interactions, non-standard decays | LHCP 2024

The extended scalar sector (aka the many ways to add spin-0 states)

NMSSM

Bounds on off-diagonal couplings CMS-TOP-22-010 arXiv:2311.03261

FIG. 19: Allowed region in the complex $\epsilon_{32}^u \epsilon_{31}^{u\star}$ -plane obtained from neutral Higgs box contributions to $D - \overline{D}$ mixing for tan $\beta = 50$ and $m_H = 700 \,\text{GeV}$ (yellow), $m_H = 500 \,\text{GeV}$ (red) and $m_H = 300 \,\mathrm{GeV}$ (blue).

arXiv:1303.5877

neutral Higgs box contribution to $D - \overline{D}$ mixing

All signal regions: $X\phi$

Label	Channels	Q_ℓ	OSSF <i>n</i>	M _{OSSF}	Nb	ST	p_{T}^3	M_ℓ	Dilepton mass
$W\phi(ee/\mu\mu)$ SR1Low	$3L(ee\mu/e\mu\mu)$	1	1	OffZ	0	_	_	< 76, > 106	$M_{ m ee}$ / $M_{\mu\mu}$
$W\phi(ee/\mu\mu)$ SR2Low	$3L(eee/\mu\mu\mu)$	1	1	OffZ	0	—	—	< 76, > 106	$M_{\rm ee}^{\rm min}/M_{\mu\mu}^{\rm min}$
$W\phi(ee/\mu\mu)$ SR1High	$3L(ee\mu/e\mu\mu)$	1	1	OffZ	0	> 200	> 15	> 150	$M_{ m ee}$ / $M_{\mu\mu}$
$W\phi(ee/\mu\mu)$ SR2High	$3L(eee/\mu\mu\mu)$	1	1	OffZ	0	> 200	> 15	> 150	$M_{\rm ee}^{\rm max}/M_{\mu\mu}^{\rm max}$
$Z\phi(ee/\mu\mu)$ SRLow	4L+3L1T+2L2T	0	≥ 1	Not double-OnZ	0	_	_	—	$M_{ m ee}^{ m min}/M_{\mu\mu}^{ m min}$
$Z\phi(ee/\mu\mu)$ SRHigh	4L+3L1T+2L2T	0	≥ 1	Not double-OnZ	0	> 200	_	> 150	$M_{\rm ee}^{\rm max}/M_{\mu\mu}^{\rm max}$
$t\bar{t}\phi(ee/\mu\mu)$ SR1Low	$3L(ee\mu/e\mu\mu)$	1	1	OffZ	≥ 1	> 350	_	> 100	$M_{ m ee}$ / $M_{\mu\mu}$
$t\bar{t}\phi(ee/\mu\mu)$ SR2Low	$3L(eee/\mu\mu\mu)$	1	1	OffZ	≥ 1	> 350	—	> 100	$M_{ m ee}^{ m min}/M_{\mu\mu}^{ m min}$
$t\bar{t}\phi(ee/\mu\mu)$ SR1High	$3L(ee\mu/e\mu\mu)$	1	1	OffZ	≥ 1	> 400	> 15	> 100	$M_{ m ee}$ / $M_{\mu\mu}$
$t\bar{t}\phi(ee/\mu\mu)$ SR2High	$3L(eee/\mu\mu\mu)$	1	1	OffZ	≥ 1	> 400	> 15	> 100	$M_{\rm ee}^{ m max}/M_{\mu\mu}^{ m max}$
$t\bar{t}\phi(ee/\mu\mu)$ SR3Low	4L+3L1T+2L2T	0	≥ 1	OffZ	—	> 350	—	—	$M_{ m ee}^{ m min}/M_{\mu\mu}^{ m min}$
$t\bar{t}\phi(ee/\mu\mu)$ SR3High	4L+3L1T+2L2T	0	≥ 1	OffZ		> 400	_	_	$M_{ m ee}^{ m max}/M_{\mu\mu}^{ m max}$

Halil Saka (University of Cyprus)

CMS-EXO-21-018

arXiv:2402.110)98
----------------	-----

	Label	Channels	Q_ℓ	OSSFn	M _{OSSF}	Nb	S _T	N_{j}	p_{T}^3	M_ℓ	Dilep
	$W\phi(\tau\tau)$ SR1	3L	1	0	_	0	> 200	_	> 15	> 150	Λ
	$W\phi(au au)$ SR2	2L1T+1L2T	1	0	_	0	> 200	_	> 30	> 150	Λ
	$W\phi(au au)$ SR3	1L2T	1	1	_	0	> 200	_	> 30	> 150	Λ
	$Z\phi(au au)$ SR1	4L+2L2T	0	1	—	0	> 200	_	—	—	Λ
	$Z\phi(au au)$ SR2	3L1T	0	1	_	0	> 200	_	_	_	Λ
	$Z\phi(au au)$ SR2	2L2T	0	0	—	0	> 200	_	—	—	Λ
+	$Z\phi(au au)$ SR3	2L2T	0	2	—	0	> 200	_	—	—	Λ
0—	$t\bar{t}\phi(au au)$ SR1	3L	1	0	—	0	> 400	>1	> 15	> 100	λ
0+	$t\bar{t}\phi(au au)$ SR2	2L1T+1L2T	1	0	_	0	> 400	>1	> 30	> 100	Λ
	$t\bar{t}\phi(au au)$ SR3	1L2T	1	1	_	0	> 400	>1	> 30	> 100	Λ
	$t\bar{t}\phi(au au)$ SR4	3L	1	1	OffZ	> 0	> 400	>1	> 15	> 100	λ
	$t\bar{t}\phi(au au)$ SR4	3L	1	0	_	> 0	> 400	>1	> 15	> 100	Λ
	$t\bar{t}\phi(au au)$ SR5	2L1T+1L2T	1	0	_	> 0	> 400	>1	> 30	> 100	λ
	$t\bar{t}\phi(\tau\tau)$ SR6	1L2T	1	1	_	> 0	> 400	>1	> 30	> 100	Λ
	$t\bar{t}\phi(au au)$ SR7	3L1T	0	1	OffZ	_	> 400	_	—	—	M
	$t\bar{t}\phi(au au)$ SR7	3L1T	0	0	_	_	> 400	_	_	_	M
	$t\bar{t}\phi(au au)$ SR7	2L2T	0	2	OffZ	_	> 400	_	_	_	M
	$t\bar{t}\phi(au au)$ SR7	2L2T	0	< 2	_	_	> 400	_	_	_	M
	$t\bar{t}\phi(au au)$ SR7	1L3T	0	1	_	—	> 400	_	_	—	M

$W\phi/Z\phi$ bounds

CMS-EXO-21-018 arXiv:2402.11098

