Measurements of the ttH + tH production with the CMS detector

Matteo Marchegiani (ETH Zürich)

on behalf of the CMS collaboration

LHCP 2024 June 4th, 2024

Matteo Marchegiani

ttH + tH Production (CMS)

04.06.2024

Outline

- $\circ~$ Introduction on ttH and tH processes
- $\circ \quad \text{ttH} (H \rightarrow \gamma \gamma)$
- ttH+tH multilepton
- ttH (H \rightarrow bb)
- \circ ttH (H \rightarrow bb) EFT

Why measuring ttH...?

The ttH production process is a direct probe of the top-Higgs interaction...

- $\circ~$ Access to the top-Higgs Yukawa coupling ${\rm y_t}$
- The top quark has the largest Higgs-fermion coupling in the SM ($y_t^{SM} \approx 1$)
- $\circ~{\rm y_t}$ has a crucial role in the stability of the electroweak vacuum
- Sensitive to new physics
- ... and a challenging process to observe due to its rarity
- Cross section: ~507 fb at \sqrt{s} = 13 TeV (@ NNLO)

It was first observed by ATLAS and CMS in 2018, combining several channels

CMS result: 5.2 σ (4.2 σ exp.) with Run 1 + 35.9 fb⁻¹ Run 2

Phys. Rev. Lett. 120 (2018) 231801

... and tH?

The tH production is also an important probe of the top-Higgs interaction

- Sensitive to the relative sign of y_t and g_w
- Enhancement of cross section up to 10× in the inverted top coupling scenario
- tH final state is orthogonal to ttH

tH is even more rare than ttH

- Cross section: ~90 fb at √s = 13 TeV
- $\circ~$ No evidence yet in CMS data

ttH/tH analyses span a wide range of final states

- Several combinations of top and Higgs decays
- Many possible final states including several different particles
 - \rightarrow jets, b-tagging, leptons, photons, MET
- Accurate modeling of backgrounds is crucial

Covered in this talk:

ttH (H → γγ) Run 2

Phys. Rev. Lett. 125 (2020) 061801 JHEP 07 (2021) 027 ttH multilepton Run 2

Eur. Phys. J. C 81 (2021) 378

ttH ($H \rightarrow bb$) Run 2

<u>CMS-PAS-HIG-19-011</u> Phys. Rev. D 108 (2023) 032008

128 129 130

M_µ [GeV]

Matteo Marchegiani

6

ttH (H $\rightarrow \gamma \gamma$)

- $H\to \gamma\gamma$ provides a clear signature
- Reconstruct Higgs boson from pairs of photons in ECAL
- Exploit outstanding mass resolution (1%)

Analysis strategy

- Events divided into
 - leptonic and hadronic channels
- BDT discriminants for each channel
 - \rightarrow maximise sensitivity to CP and μ_{ttH}
- Simultaneous fit to m_{yy}
 - → Signal: Gaussian + Crystal-Ball
 - → **Background:** analytic function

BDT distribution for signal extraction in hadronic channel

ETH zürich 🞇

LHCP 2024

Phys. Rev. Lett. 125 (2020) 061801

ttH + tH Production (CMS)

7

ttH (H $\rightarrow \gamma\gamma$) – Results

Phys. Rev. Lett. 125 (2020) 061801

- Challenging background estimation:
- Irreducible:
 - ttW, ttZ/gamma, diboson
- Reducible: 0
 - non-prompt or fake leptons

0/+22 1/+ 12 1/+22 2/0S+ 2/+22 3/+ 12 4/+02 3/+02 2/SS+02 2/SS+12

tH enriched categories

10

Leptons

Eur. Phys. J. C 81 (2021) 378

ttH multilepton – Analysis strategy

- 10 event categories based on
 - \rightarrow lepton flavour, multiplicity and electric charge
- Signal extraction with
 - \rightarrow **DNN** in tH enriched categories
 - \rightarrow **BDT** in other categories
- $\circ~$ 3 control regions to constrain ttW and ttZ backgrounds
- $\circ~$ Simultaneous fit of signal and control regions

LHCP 2024

Matteo Marchegiani

ttH + tH Production (CMS)

Data - Experimente Expectat

10

ttH multilepton – Results

Eur. Phys. J. C 81 (2021) 378

04.06.2024

Significance **ttH**: 4.7σ (5.2 σ exp.) **tH**: 1.4σ (0.3 σ exp.)

ttH and tH signal strength $\mu_{t\bar{t}H} = 0.92 \pm 0.19 \,(\text{stat})^{+0.17}_{-0.13} \,(\text{syst})$ $\mu_{tH} = 5.7 \pm 2.7 \,(\text{stat}) \pm 0.3 \,(\text{syst})$

Constraint on κ_{4} coupling modifier

$$-0.9 < k_t < -0.7$$
 or
 $0.7 < k_t < 1.1$ at 95% C.L.

CMS

 $\mu = 1.01^{+0.32}_{-0.29}$

 $\mu = 1.53^{+0.43}_{-0.38}$

 $\mu = 0.62 \begin{array}{c} ^{+0.54}_{-0.62} \end{array}$

Combined

2lss + 0τ. **3I + 0**τ_h

21ss + 1t

LHCP 2024

ETH zürich 🞽

Higgs decay channel with highest BR

- Ambiguity in assignment of jets to the Higgs candidate
- Irreducible tt+bb background Ο
 - difficult to model \rightarrow

ttH (H \rightarrow bb)

- Complex analysis strategy
- Categories in lepton, jet and b-jet multiplicity
- BDT for jet-parton assignment Ο
- Signal extracted using DNN Ο multi-classifiers
- Simultaneous fit of discriminant scores Ο

Postfit yields in each discriminant

2018 discriminant bins

Matteo Marchegiani

ttH + tH Production (CMS)

12

04.06.2024

Matteo Marchegiani

Ο

Ο

Ο

ttH + tH Production (CMS)

Matteo Marchegiani

04.06.2024

 $\mathcal{L}_{SM} = \mathcal{L}_{SM}^{(4)} + \frac{1}{\Lambda} \sum_{k} \mathcal{O}_{k}^{(5)} Q_{k}^{(5)} + \frac{1}{\Lambda^{2}} \sum_{k} C_{k}^{(6)} Q_{k}^{(6)} + \mathcal{O}\left(\frac{1}{\Lambda^{3}}\right)$

Phys. Rev. D 108 (2023) 032008

Standard Model EFT Lagrangian

ETH zürich 📂

function of Higgs pT and c ath topology DNN discriminant to select $X \rightarrow bb$ Ο 13 TeV AK8 jets Constraints on 8 Wilson Coefficients Ο of dim-6 operators relevant to ttH and ttZ

=0 for lepton number conservation

Ο

600

All measured Wilson Coefficients are compatible with the SM

Targeting ttZ + ttH in boosted

SM EFT cross-section as a

ttH (H \rightarrow bb) – EFT

CMS Simulation

First constraint of EFT parameters in ttH (H \rightarrow bb)

Matteo Marchegiani

Summary

- $\circ\,$ Plethora of analyses targeting the ttH final state
 - \rightarrow ttH (H $\rightarrow \gamma\gamma$), ttH multilepton, ttH (H \rightarrow bb)
- Very challenging measurement due to small cross section and complex final states
 - \rightarrow ML-based strategies are fundamental
- Good precision of inclusive ttH results
- First differential results and analysis of CP structure in ttH+tH
- Observations are overall compatible with the SM

A lot was learnt in Run 2, looking forward to apply new ideas in Run 3!

LHCP 2024

Thank you for the attention!

JHEP 07 (2021) 027

ttH (H $\rightarrow \gamma\gamma$) – STXS results

Observed results of the maximal merging scheme STXS fit

ETH zürich 🞽

ttH+tH categories from STXS $H \rightarrow \gamma\gamma$ combination

Matteo Marchegiani

Phys. Rev. Lett. 125 (2020) 061801

ttH (H $\rightarrow \gamma\gamma$)

Distributions of BDT-bkg output used for event categorization, for the hadronic (left) and the leptonic (right) channels.

ETH zürich 💥

ttH multilepton – Background normalisation

ttZ and ttW signal strength $\mu_{t\bar{t}Z} = 1.03 \pm 0.14 \text{ (stat + syst)}$ $\mu_{t\bar{t}W} = 1.43 \pm 0.21 \text{ (stat + syst)}$

ttZ normalisation compatible with SM

Eur. Phys. J. C 81 (2021) 378

LHCP 2024

ETH zürich 🎇

ttW 2*o* above SM

Matteo Marchegiani

ttH + tH Production (CMS)

04.06.2024

ttH (H \rightarrow bb)

CMS-PAS-HIG-19-011

Prefit distributions of the jet multiplicity in the FH, SL and DL channels

Matteo Marchegiani

ttH + tH Production (CMS)

ttH – CP properties

LHCP 2024

CMS-PAS-HIG-19-011 JHEP 07 (2023) 092

2D likelihood scan as a function of κ_t and $\sim \kappa_t$ for ttH multilepton and (H $\rightarrow \gamma \gamma$) (left) and ttH (H \rightarrow bb) (right)

