Top-quark pair production with heavy-flavor jets

LHCP June 3rd-7th 2024, Boston University

Ana Luísa Carvalho on behalf of the ATLAS and CMS Collaborations

Anatomy of tt production with additional heavy-flavor jets

Adapted from PLB 820 (2021)

Top quark

• 2 b-jets from top quark decay

• 2 W-bosons

Both decay to leptons

=2 charged leptons

Dilepton channel

One decays to leptons, the other to quarks

=1 charged lepton

Single-lepton channel

Extra-jets

- Mostly from gluon splitting
- Can originate from heavy boson

Important and challenging

- Important test of quantum chromodynamics (QCD) perturbative calculations
- Leading backgrounds in searches for BSM physics and measurements of other SM processes: ttH(H→bb) and 4-top production
 - Irreducible background in ttH(H→bb), extremely hard to isolate

The challenges

Theoretical

- Different energy scales associated with the tt and bb/cc pair
- Non-negligible mass of the b-quark

Experimental

- Identification of b- and c-jets comes with inefficiencies and large uncertainties
- Measurements have to at least partially rely on MC simulation

At a glance

Less studied

- Focusing on measurements performed at $\sqrt{s} = 13$ TeV
- CMS tt+b-jets measurement in all-hadronic final state (PLB 803 (2020))
 - Very different phase space with ≥ 8 jets \Rightarrow Not covered in this talk

	Measurement	ATLAS	CMS
tagging	tt+b-jets Inclusive and differential cross-sections	 JHEP 04 (2019) 046 𝔐 = 36.1 \fb Dilepton (eµ) and single-lepton 	JHEP 05 (2024) 042 • $\mathcal{L} = 138 \fb$ • Single-lepton
Harder flavoi	tt+c-jets Inclusive cross-section	Not yet	 PLB 820 (2021) 𝔐 = 45.1 \fb Dilepton

tt + b-jets | Fiducial phase space

• Fiducial phase space regions target different aspects of tt+b-jets production: ttb, ttbb, ttbj, ttbbj

Truth-level objects (ATLAS/CMS)	ATLAS dilepton (eµ)	ATLAS single-lepton	CMS single-lepton
Leptons pT>25/29 GeV (electrons) pT>25/26 GeV (muons)	= 1 electron and = 1 muon with opposite charge	= 1 electron or muon	= 1 electron or muon
Jets and b-jets anti-kT R=0.4 pT>25 GeV	<mark>≥ 3 b-jets</mark> ≥ 4b-jets	<mark>≥ 5 jets, ≥ 3 b-jets</mark> ≥ 6 jets, ≥ 4 b-jets	\ge 5 jets, \ge 3 b-jets \ge 6 jets, \ge 4 b-jets \ge 6 jets, \ge 3 b-jets, \ge 3 light-jets \ge 7 jets, \ge 4 b-jets, \ge 3 light-jets

tt + b-jets | Background estimation

• **tt+jets MC simulation:** massive b-quarks in matrix element calculation but not in PDFs (4 flavor-scheme) or massless b-quarks from parton shower but included in PDFs (5 flavor-scheme)?

Process	ATLAS	CMS
tt+b-jets	ttbar 5FS Powheg+Pythia8 $\mu_{\rm F}$ = $\mu_{\rm R}$ = $m_{\rm T,t}$	ttbb 4FS Powheg+OpenLoops+Pythia8 μ _F =¼ HT, μ _R =½ Π _i m _{Ti} ^½
tt+c-jets tt+light	ttbar 5FS Powheg+Pythia8 $\mu_{\rm F}=\mu_{\rm R}=m_{\rm T,t}$	

tt + b-jets | CMS signal extraction strategy

- Likelihood fit to data for each variable in signal
 (>3 b-jets) and control regions (≤2 b-jets)
 - Particle-level unfolding ⇒ Inclusive fiducial cross-section extracted directly from the fit
 - Systematic uncertainties included as nuisance parameters in the likelihood
- Dedicated variables for extra-jets ⇒ DNN is trained to identify the most likely jet-parton assignments
- **Dominant systematic uncertainties:** b-tagging, $\mu_{\rm R'} \mu_{\rm F'}$ parton shower scales (ISR, FSR)

tt + b-jets | ATLAS signal extraction strateg[,]

- Likelihood fit to data in regions with ≥3 b-jets (dilepton) or ≥5 jets, ≥ 2b-jets (single-lepton)
 - Extract normalization factors for tt+≥1b, tt+≥1c and tt+light
- In each fiducial region, non-ttbar background subtracted from data at detector level, in each bin
- Particle-level unfolding to obtain fiducial cross-sections
 - Data-driven correction factors for flavour composition included
- **Dominant systematic uncertainties:** b-tagging, ttc fit variation (dilepton), parton shower (Powheg+H7), generator (varied in the unfolding)

tt + b-jets | Inclusive cross-section results

Input

tt + c-jets | Strategy

- Event selection: =2 leptons with opposite charge, \geq 4 jets, b-jets from top decay, MET>30 GeV (ee or $\mu\mu$)
- Signal and background estimated from MC simulation: ttbar inclusive Powheg Pythia8 5FS @NLO in QCD
 - \circ Cross-section: $\sigma_{tar{t}} = 832^{+39.9}_{-45.8} ~{
 m pb}~({
 m Phys.~Lett.~B~710~612})$

Multivariate method	Purpose	Output
Multi-class neural network*	Identify b- and c-jets	P(b), P(bb), P(c), P(light)
Neural network	Assign jets to partons	Correct permutation
Multi-class neural network	Separate signal from backgrounds	P(ttcc), P(ttcL), P(ttbb), P(ttbL), P(ttLL)

*Calibrated to data in control regions

• Discriminants used in the fit to data

$$\Delta_{\mathbf{b}}^{\mathbf{c}} = \frac{P(t\bar{\mathbf{t}}c\bar{\mathbf{c}})}{P(t\bar{\mathbf{t}}c\bar{\mathbf{c}}) + P(t\bar{\mathbf{t}}b\bar{\overline{\mathbf{b}}})} \qquad \Delta_{\mathbf{L}}^{\mathbf{c}}$$

$$\Delta_{\rm L}^{\rm c} = \frac{P(t\bar{t}c\bar{c})}{P(t\bar{t}c\bar{c}) + P(t\bar{t}LL)}$$

tt + c-jets | Signal extraction strategy and results

- Fit performed in fiducial and generator phase spaces
 - Fiducial: =2 leptons with opposite charge from
 W decays, ≥2 b-jets from top, ≥2 extra jets
 - Generator: ≥2 extra jets

σ (ttcc) [pb]	Measurement	PP8
Fiducial	0.207±0.025±0.027	0.187±0.038
Generator	10.1±1.2±1.4	9.1±1.8

• **Dominant systematic uncertainties:** c-tagging calibration and ME-PS matching

One-dimensional representation of the two-dimensional discriminants

Closing words

- Top quark pair production with additional heavy flavor jets is a dominant background in SM analysis and searches for new physics
 - Striking example is $ttH(H\rightarrow bb)$
- Very different energy scales associated with the top- and b/c-jet pair ⇒ **Hard to model**
- Identifying (tagging) heavy flavor jets has associated inefficiencies and uncertainties \Rightarrow Hard to measure
- Despite improvements in the simulation of ttbb the agreement between data and MC is still not optimal
 - Large impact from different renormalization and factorization scales
- First measurements of tt+c-jets appearing now ⇒ Need for development of theoretical predictions
- Only one of the results shown today uses the full Run 2 dataset
 - Final word on the tt+b-jets and tt+c-jets cross-sections still to come

Backup

tt + b-jets | CMS signal extraction strategy

- Likelihood fit to data for each variable in signal (>3 b-jets) and control regions (≤2 b-jets)
 - Response matrices included in the definition of likelihood ⇒ Inclusive fiducial cross-section extracted directly from the fit
 - Systematic uncertainties included as nuisance parameters in the likelihood
- Dedicated variables for extra-jets ⇒ DNN is trained to identify the most likely jet-parton assignments
- **Dominant systematic uncertainties:** b-tagging, $\mu_{\rm R'} \mu_{\rm F'}$ parton shower scales

$$S_{e,i}(\vec{\mu},\vec{\alpha}) = \mu_{\text{fid}} \sum_{j=1}^{n} \mu_j \underline{M_{ij}^e(\vec{\alpha})}$$

Encodes probability that a simulated event in **generator-level bin j** is reconstructed and selected in **detector-level bin i**

tt + b-jets | ATLAS signal extraction strategy

- Likelihood fit to data in regions with ≥3 b-jets (dilepton) or
 ≥5 jets, ≥ 2b-jets (single-lepton)
 - Normalization factors for tt+>1b, tt+>1c and tt+light
- In each fiducial region, non-ttbar background subtracted from data at detector level, in each bin
- Corrections applied to data in fiducial regions
 - Mis-tagged events
 - Fiducial acceptance correction
 - Detector and particle level matching correction
 - Reconstruction efficiency
- **Dominant systematic uncertainties:** b-tagging, ttc fit variation (dilepton), parton shower, generator

$$\frac{\mathrm{d}\sigma^{\mathrm{fid}}}{\mathrm{d}X^{i}} = \frac{N_{\mathrm{unfold}}^{i}}{\mathcal{L}\,\Delta X^{i}} = \frac{1}{\mathcal{L}\,\Delta X^{i}\,f_{\mathrm{eff}}^{i}} \sum_{j} \mathcal{M}_{ij}^{-1}\,f_{\mathrm{matching}}^{j}\,f_{\mathrm{accept}}^{j} \int_{t\bar{t}b}^{j} (N_{\mathrm{data}}^{j} - N_{\mathrm{non-}t\bar{t}-\mathrm{bk}}^{j})$$

tt + b-jets | Inclusive cross-section results

tt + b-jets | Differential cross-section results

tt + b-jets | Differential cross-section results

