Top-Bottom Interference Contribution to Fully-Inclusive Higgs Production

Marco Niggetiedt

with M. Czakon, F. Eschment, R. Poncelet and T. Schellenberger

based on

PRL 132 (2024) 211902

12th Edition of the Large Hadron Collider Physics Conference

Boston June 4th 2024

Gluon fusion

- Gluon fusion is the predominant Higgs boson production mode at the LHC
 - \succ loop induced process

- Higgs boson plays unique role in the SM:
 - Only scalar particle
 - > Only particle with Yukawa interactions to fermions
- Predictions for gluon fusion cross section directly impact extraction of Higgs couplings from experimental measurements
- Reducing theory uncertainty is crucial for facilitating high precision measurements of Higgs couplings at the LHC
- ➢ High luminosity LHC projections anticipate uncertainty 𝒪(2%) and theory uncertainty to be halved WG2 Report `19

All sources O(1%)

Order by order in perturbation theory

• LO contribution exactly known for almost 50 years

Georgi, Glashow, Machacek, et al. `78

$48.58\mathrm{pb} =$	$16.00\mathrm{pb}$	(+32.9%)	(LO, rEFT)
	$+20.84\mathrm{pb}$	(+42.9%)	(NLO, rEFT)
	$-2.05\mathrm{pb}$	(-4.2%)	((t, b, c), exact NLO)
	+ 9.56 pb	(+19.7%)	(NNLO, rEFT)
	+ 0.34 pb	(+0.7%)	$(NNLO, 1/m_t)$
	$+ 2.40\mathrm{pb}$	(+4.9%)	(EW, QCD-EW)
	+ 1.49 pb	(+3.1%)	$(N^{3}LO, rEFT)$

Order by order in perturbation theory

• LO contribution exactly known for almost 50 years

$48.58\mathrm{pb} =$	$16.00\mathrm{pb}$	(+32.9%)	(LO, rEFT)
	$+20.84\mathrm{pb}$	(+42.9%)	(NLO, rEFT)
	$-2.05\mathrm{pb}$	(-4.2%)	((t, b, c), exact NLO)
	+ 9.56 pb	(+19.7%)	(NNLO, rEFT)
	+ 0.34 pb	(+0.7%)	$(NNLO, 1/m_t)$
	$+ 2.40\mathrm{pb}$	(+4.9%)	(EW, QCD-EW)
	+ 1.49 pb	(+3.1%)	$(N^{3}LO, rEFT)$

• NLO contribution exactly known for arbitrary quark masses running in the loop Graudenz, Spira, Zerwas `93

Inclusive cross section in (r)EFT

 LO contribution exactly known for almost 50 years

Georgi, Glashow, Machacek, et al. `78

• NLO contribution exactly known for arbitrary quark masses running in the loop Graudenz, Spira, Zerwas `93

Chetyrkin, Kniehl, Steinhauser `98 Schröder, Steinhauser `06 Chetyrkin, Kühn, Sturm `06

$$\sigma_{\rm HEFT}^{\rm HO} = \left(\frac{\sigma^{\rm HO}}{\sigma^{\rm LO}}\right)_{M_{\rm t}\to\infty} \sigma^{\rm LO}$$

Computation

Analytically: Del Duca, Kilgore, Oleari, et al. `01
OpenLoops 2: Buccioni, Lang, Lindert, et al. `19
Analytically (more compact and implemented in MCFM): Budge, Campbell, De Laurentis, et al. `20

Analytically: Del Duca, Kilgore, Oleari, et al. `01 OpenLoops 2: Buccioni, Lang, Lindert, et al. `19 Analytically (more compact and implemented in MCFM): Budge, Campbell, De Laurentis, et al. `20

Double-virtual corrections

Analytically: Del Duca, Kilgore, Oleari, et al. `01 OpenLoops 2: Buccioni, Lang, Lindert, et al. `19 Analytically (more compact and implemented in MCFM): Budge, Campbell, De Laurentis, et al. `20

Analytically: Del Duca, Kilgore, Oleari, et al. `01 OpenLoops 2: Buccioni, Lang, Lindert, et al. `19 Analytically (more compact and implemented in MCFM): Budge, Campbell, De Laurentis, et al. `20

00000

(00000 × 00000

00000

00000 00000

Analytically: Del Duca, Kilgore, Oleari, et al. `01
OpenLoops 2: Buccioni, Lang, Lindert, et al. `19
Analytically (more compact and implemented in MCFM): Budge, Campbell, De Laurentis, et al. `20

Real-virtual corrections

Real-virtual corrections

A,B,C,D: Bonciani, Del Duca, Frellesvig, et al. `16F: Bonciani, Del Duca, Frellesvig, et al. `19G: Frellesvig, Hidding, Maestri, et al. `19

Contributions with two closed fermion chains are always factorizable:

Parametrization

- Variables: \hat{s} , \hat{t} , \hat{u} , m_H^2 , m_q^2
- Introduce dimensionless variables and $\underline{\rm fix}\;{\rm ratio}\;m_q^2/m_H^2$
 - $\succ z$ parametrizes soft limit
 - $\succ \lambda$ parametrizes collinear limit

000

000

$$\hat{t}/\hat{s} = z \lambda$$

$$\hat{u}/\hat{s} = z (1-\lambda)$$

$$z = 1-m_H^2/\hat{s}$$

$$\lambda = \hat{t}/(\hat{t}+\hat{u})$$

$$z = 1 - m_H^2 / \hat{s}$$

$$\lambda = \hat{t} / (\hat{t} + \hat{u})$$

$$m_t^2 / m_H^2 = 23/12$$

$$m_b^2 / m_H^2 = 1/684$$

Range of parameters:
• $\lambda \in (0,1)$
• $z \in (0,1)$
• $z \in (0,1)$

Numerical evolutions

$$z = 1 - m_H^2 / \hat{s}$$

$$\lambda = \hat{t} / (\hat{t} + \hat{u})$$

$$m_t^2 / m_H^2 = 23/12$$

➢ Initial condition given in the limit m²_q → ∞
 ➢ Transport boundary from m²_q → ∞ to physical plane

Construction of amplitudes

- Collected 2×10^6 numerical samples for MIs at m_t^2/m_H^2 by evaluation of the LME and numerical evolution above threshold
- Collected 1×10^6 numerical samples for MIs at m_b^2/m_H^2 via numerical evolution in the entire phase space

Insert into form factors and construct helicity amplitudes

Analytically: Del Duca, Kilgore, Oleari, et al. `01 OpenLoops 2: Buccioni, Lang, Lindert, et al. `19 Analytically (more compact and implemented in MCFM): Budge, Campbell, De Laurentis, et al. `20

halytically: Del Duca, Kilgore, Oleari, et al. `01 penLoops 2: Buccioni, Lang, Lindert, et al. `19 halytically (more compact and implemented in MCFM): Budge, Campbell, De Laurentis, et al. `20

> Phase-space integration with sector-improved residue subtraction scheme (Stripper Czakon `10)

Note on the flavor scheme

• Subsets of diagrams in real-virtual and double virtual contribution give rise logarithmic mass divergences

4-flavor scheme

- Consistent treatment of massive t- and b-quarks
- Exclude b-quark from initial state
- Include massive b-quark splittings in final state

5-flavor scheme

- Treat b-quark as massless particle
- Massive b-quark only present in loops directly attached to the Higgs-boson
- Corresponds to theory with a replica b-quark carrying the mass of a heavy b-quark

- Effects of interference of top- and bottom-quark amplitudes on Higgs production in gluon-fusion at the LHC
 - PDF set: NNPDF31_nnlo_as_0118 NNPDF Collaboration `17
 - $\mu_R = \mu_F = m_H/2$ (central scale)
 - m_H = 125 GeV \Rightarrow m_t \approx 173.055 GeV and m_b \approx 4.779 GeV (*both* in OS-scheme)
 - HEFT values obtained with **SusHi** Harlander, Liebler, Mantler `16

Order	$\sigma_{ m HEFT} ~[m pb]$	$(\sigma_t - \sigma_{\rm HEFT})$ [pb]	$\sigma_{t \times b} [\mathrm{pb}]$	$\sigma_{t imes b} / \sigma_{ m HEFT}$ [%]
		$\sqrt{s} = 8 \text{ TeV}$		
$\mathcal{O}(\alpha_s^2)$	+7.39	—	-0.895	
LO	$7.39^{+1.98}_{-1.40}$	—	$-0.895^{+0.17}_{-0.24}$	-12
$\mathcal{O}(lpha_s^3)$	+9.14	-0.0873	-0.268	
NLO	$16.53^{+3.63}_{-2.73}$	$-0.0873^{+0.030}_{-0.052}$	$-1.163^{+0.10}_{-0.08}$	$-7.0^{+1.0}_{-0.8}$
$\mathcal{O}(\alpha_s^4)$	+4.19	+0.0523(2)	+0.167(3)	
NNLO	$20.72^{+1.84}_{-2.06}$	$-0.0350(2)^{+0.048}_{-0.013}$	$-0.996(3)^{+0.12}_{-0.05}$	$-4.8^{+0.9}_{-0.8}$
		$\sqrt{s} = 13 \text{ TeV}$	T	
$\mathcal{O}(lpha_s^2)$	+16.30	—	-1.975	
LO	$16.30^{+4.36}_{-3.10}$	_	$-1.98^{+0.38}_{-0.53}$	-12
$\mathcal{O}(lpha_s^3)$	+21.14	-0.303	-0.446(1)	
NLO	$37.44_{-6.29}^{+8.42}$	$-0.303^{+0.10}_{-0.17}$	$-2.42^{+0.19}_{-0.12}$	$-6.5^{+0.9}_{-0.8}$
$\mathcal{O}(lpha_s^4)$	+9.72	+0.147(1)	+0.434(8)	
NNLO	$47.16_{-4.77}^{+4.21}$	$-0.156(1)^{+0.13}_{-0.03}$	$-1.99(1)^{+0.30}_{-0.15}$	$-4.2^{+0.9}_{-0.8}$

- Effects of interference of top- and bottom-quark amplitudes on Higgs production in gluon-fusion at the LHC
 - PDF set: NNPDF31_nnlo_as_0118 NNPDF Collaboration `17
 - $\mu_R = \mu_F = m_H/2$ (central scale)
 - m_H = 125 GeV \Rightarrow m_t pprox 173.055 GeV and m_b pprox 4.779 GeV (*both* in OS-scheme)
 - HEFT values obtained with **SusHi** Harlander, Liebler, Mantler `16

Order	$\sigma_{\rm HEFT}$ [pb]	$(\sigma_t - \sigma_{\text{HEFT}}) \text{ [pb]}$	$\sigma_{t \times b} [\mathrm{pb}]$	$\sigma_{t \times b} / \sigma_{\text{HEFT}}$ [%]
		$\sqrt{s} = 13 \text{ TeV}$		
$\mathcal{O}(\alpha_s^2)$	+16.30	_	-1.975	
LO	$16.30^{+4.36}_{-3.10}$	—	$-1.98\substack{+0.38\\-0.53}$	-12
$\mathcal{O}(\alpha_s^3)$	+21.14	-0.303	-0.446(1)	
NLO	$37.44_{-6.29}^{+8.42}$	$-0.303^{+0.10}_{-0.17}$	$-2.42^{+0.19}_{-0.12}$	$-6.5^{+0.9}_{-0.8}$
$\mathcal{O}(\alpha_s^4)$	+9.72	+0.147(1)	+0.434(8)	
NNLO	$47.16^{+4.21}_{-4.77}$	$-0.156(1)^{+0.13}_{-0.03}$	$-1.99(1)^{+0.30}_{-0.15}$	$-4.2^{+0.9}_{-0.8}$

- Effects of interference of top- and bottom-quark amplitudes on Higgs production in gluon-fusion at the LHC
 - PDF set: NNPDF31_nnlo_as_0118 NNPDF Collaboration `17
 - $\mu_R = \mu_F = m_H/2$ (central scale)
 - m_H = 125 GeV \Rightarrow m_t \approx 173.055 GeV and m_b \approx 4.779 GeV (*both* in OS-scheme)
 - HEFT values obtained with **SusHi** Harlander, Liebler, Mantler `16

Order	$\sigma_{\rm HEFT}$ [pb]	$(\sigma_t - \sigma_{\text{HEFT}}) \text{ [pb]}$	$\sigma_{t \times b} [\mathrm{pb}]$	$\sigma_{t \times b} / \sigma_{\text{HEFT}}$ [%]
		$\sqrt{s} = 13 \text{ TeV}$	τ	
$\mathcal{O}(\alpha_s^2)$	+16.30	—	-1.975	
LO	$16.30^{+4.36}_{-3.10}$	—	$-1.98\substack{+0.38\\-0.53}$	-12
$\mathcal{O}(\alpha_s^3)$	+21.14	-0.303	-0.446(1)	
NLO	$37.44_{-6.29}^{+8.42}$	$-0.303\substack{+0.10\\-0.17}$	$-2.42^{+0.19}_{-0.12}$	$-6.5\substack{+0.9\\-0.8}$
$\mathcal{O}(\alpha_s^4)$	+9.72	+0.147(1)	+0.434(8)	
NNLO	$47.16^{+4.21}_{-4.77}$	$-0.156(1)^{+0.13}_{-0.03}$	$-1.99(1)^{+0.30}_{-0.15}$	$-4.2^{+0.9}_{-0.8}$

> Interference effects much larger than pure top mass effect

- Effects of interference of top- and bottom-quark amplitudes on Higgs production in gluon-fusion at the LHC
 - PDF set: NNPDF31_nnlo_as_0118 NNPDF Collaboration `17
 - $\mu_R = \mu_F = m_H/2$ (central scale)
 - m_H = 125 GeV \Rightarrow m_t pprox 173.055 GeV and m_b pprox 4.779 GeV (*both* in OS-scheme)
 - HEFT values obtained with **SusHi** Harlander, Liebler, Mantler `16

Order	$\sigma_{ m HEFT}$ [pb]	$(\sigma_t - \sigma_{\text{HEFT}}) \text{ [pb]}$	$\sigma_{t \times b} [\mathrm{pb}]$	$\sigma_{t \times b} / \sigma_{\text{HEFT}} [\%]$
		$\sqrt{s} = 13 \text{ TeV}$	r	
$\mathcal{O}(\alpha_s^2)$	+16.30	—	-1.975	
LO	$16.30\substack{+4.36 \\ -3.10}$	—	$-1.98^{+0.38}_{-0.53}$	-12
$\mathcal{O}(\alpha_s^3)$	+21.14	-0.303	-0.446(1)	
NLO	$37.44_{-6.29}^{+8.42}$	$-0.303^{+0.10}_{-0.17}$	$-2.42^{+0.19}_{-0.12}$	$-6.5^{+0.9}_{-0.8}$
$\mathcal{O}(\alpha_s^4)$	+9.72	+0.147(1)	+0.434(8)	
NNLO	$47.16^{+4.21}_{-4.77}$	$-0.156(1)^{+0.13}_{-0.03}$	$-1.99(1)^{+0.30}_{-0.15}$	$-4.2^{+0.9}_{-0.8}$

> Interference effects much larger than pure top mass effect

Interference effect at NNLO cancels against NLO

- Effects of interference of top- and bottom-quark amplitudes on Higgs production in gluon-fusion at the LHC
 - PDF set: NNPDF31_nnlo_as_0118 NNPDF Collaboration `17
 - $\mu_R = \mu_F = m_H/2$ (central scale)
 - m_H = 125 GeV \Rightarrow m_t \approx 173.055 GeV and m_b \approx 4.779 GeV (*both* in OS-scheme)
 - HEFT values obtained with **SusHi** Harlander, Liebler, Mantler `16

Order	$\sigma_{\rm HEFT}$ [pb]	$(\sigma_t - \sigma_{\text{HEFT}}) \text{ [pb]}$	$\sigma_{t \times b} [\mathrm{pb}]$	$\sigma_{t \times b} / \sigma_{\text{HEFT}}$ [%]
		$\sqrt{s} = 13 \text{ TeV}$		
$\mathcal{O}(\alpha_s^2)$	+16.30	—	-1.975	
LO	$16.30^{+4.36}_{-3.10}$	—	$-1.98\substack{+0.38\\-0.53}$	-12
$\mathcal{O}(\alpha_s^3)$	+21.14	-0.303	-0.446(1)	
NLO	$37.44_{-6.29}^{+8.42}$	$-0.303^{+0.10}_{-0.17}$	$-2.42^{+0.19}_{-0.12}$	$-6.5^{+0.9}_{-0.8}$
$\mathcal{O}(\alpha_s^4)$	+9.72	+0.147(1)	+0.434(8)	
NNLO	$47.16^{+4.21}_{-4.77}$	$-0.156(1)^{+0.13}_{-0.03}$	$-1.99(1)^{+0.30}_{-0.15}$	$-4.2^{+0.9}_{-0.8}$

- Interference effects much larger than pure top mass effect
- Interference effect at NNLO cancels against NLO

Czakon, Eschment, MN, Poncelet, Schellenberger `23

Interference effect at NNLO larger than NLO scale variation (similar in HEFT but less severe)

- Effects of interference of top- and bottom-quark amplitudes on Higgs production in gluon-fusion at the LHC
 - PDF set: NNPDF31_nnlo_as_0118 NNPDF Collaboration `17
 - $\mu_R = \mu_F = m_H/2$ (central scale)
 - m_H = 125 GeV \Rightarrow m_t \approx 173.055 GeV and m_b \approx 4.779 GeV (*both* in OS-scheme)
 - HEFT values obtained with SusHi Harlander, Liebler, Mantler `16

Order	$\sigma_{\rm HEFT}$ [pb]	$(\sigma_t - \sigma_{\text{HEFT}}) \text{ [pb]}$	$\sigma_{t \times b} [\mathrm{pb}]$	$\sigma_{t \times b} / \sigma_{\text{HEFT}}$ [%]
		$\sqrt{s} = 13 \text{ TeV}$	*	
$\mathcal{O}(\alpha_s^2)$	+16.30	—	-1.975	
LO	$16.30^{+4.36}_{-3.10}$	—	$-1.98\substack{+0.38\\-0.53}$	-12
$\mathcal{O}(\alpha_s^3)$	+21.14	-0.303	-0.446(1)	
NLO	$37.44_{-6.29}^{+8.42}$	$-0.303\substack{+0.10\\-0.17}$	$-2.42^{+0.19}_{-0.12}$	$-6.5^{+0.9}_{-0.8}$
$\mathcal{O}(\alpha_s^4)$	+9.72	+0.147(1)	+0.434(8)	
NNLO	$47.16^{+4.21}_{-4.77}$	$-0.156(1)^{+0.13}_{-0.03}$	$-1.99(1)^{+0.30}_{-0.15}$	$-4.2^{+0.9}_{-0.8}$

- Interference effects much larger than pure top mass effect
- Interference effect at NNLO cancels against NLO

- Interference effect at NNLO larger than NLO scale variation (similar in HEFT but less severe)
- Interference NNLO scale variation increases compared to NLO

- Effects of interference of top- and bottom-quark amplitudes on Higgs production in gluon-fusion at the LHC
 - PDF set: NNPDF31_nnlo_as_0118 NNPDF Collaboration `17
 - $\mu_R = \mu_F = m_H/2$ (central scale)
 - m_H = 125 GeV \Rightarrow m_t \approx 173.055 GeV and m_b \approx 4.779 GeV (*both* in OS-scheme)
 - HEFT values obtained with SusHi Harlander, Liebler, Mantler `16

Order	$\sigma_{\rm HEFT}$ [pb]	$(\sigma_t - \sigma_{\text{HEFT}}) \text{ [pb]}$	$\sigma_{t \times b} [\mathrm{pb}]$	$\sigma_{t \times b} / \sigma_{\text{HEFT}}$ [%]
		$\sqrt{s} = 13 \text{ TeV}$	τ	
$\mathcal{O}(\alpha_s^2)$	+16.30	—	-1.975	
LO	$16.30\substack{+4.36\\-3.10}$	—	$-1.98\substack{+0.38\\-0.53}$	-12
$\mathcal{O}(\alpha_s^3)$	+21.14	-0.303	-0.446(1)	
NLO	$37.44_{-6.29}^{+8.42}$	$-0.303^{+0.10}_{-0.17}$	$-2.42^{+0.19}_{-0.12}$	$-6.5^{+0.9}_{-0.8}$
$\mathcal{O}(\alpha_s^4)$	+9.72	+0.147(1)	+0.434(8)	
NNLO	$47.16^{+4.21}_{-4.77}$	$-0.156(1)^{+0.13}_{-0.03}$	$-1.99(1)^{+0.30}_{-0.15}$	$-4.2^{+0.9}_{-0.8}$

- Interference effects much larger than pure top mass effect
- Interference effect at NNLO cancels against NLO
- > Interference effect at NNLO larger than NLO scale variation (similar in HEFT but less severe)
- Interference NNLO scale variation increases compared to NLO
- > Similar effects for different top quark mass ($m_t \approx 170.979$ GeV)

- Effects of interference of top- and bottom-quark amplitudes on Higgs production in gluon-fusion at the LHC
 - PDF set: NNPDF31_nnlo_as_0118 NNPDF Collaboration `17
 - $\mu_R = \mu_F = m_H/2$ (central scale)
 - $m_H = 125 \text{ GeV} \Rightarrow m_t \approx 173.055 \text{ GeV}$ and $m_b \approx 4.779 \text{ GeV}$ (OS-scheme, but Y_b in \overline{MS} with $\overline{m}_b(\overline{m}_b) \approx 4.18 \text{ GeV}$)
 - HEFT values obtained with SusHi Harlander, Liebler, Mantler `16

Order	$\sigma_{ m HEFT} \ [m pb]$	$(\sigma_t - \sigma_{\text{HEFT}}) \text{ [pb]}$	$\sigma_{t \times b} [\mathrm{pb}]$	$\sigma_{t \times b} \left(Y_{b,\overline{\mathrm{MS}}} \right) [\mathrm{pb}]$
		$\sqrt{s} = 13 \text{ TeV}$	r	
$\mathcal{O}(\alpha_s^2)$	+16.30	_	-1.975	-1.223
LO	$16.30^{+4.36}_{-3.10}$	—	$-1.98^{+0.38}_{-0.53}$	$-1.22^{+0.29}_{-0.44}$
$\mathcal{O}(lpha_s^3)$	+21.14	-0.303	-0.446(1)	-0.623(1)
NLO	$37.44_{-6.29}^{+8.42}$	$-0.303^{+0.10}_{-0.17}$	$-2.42^{+0.19}_{-0.12}$	$-1.85^{+0.26}_{-0.26}$
$\mathcal{O}(\alpha_s^4)$	+9.72	+0.147(1)	+0.434(8)	+0.019(5)
NNLO	$47.16^{+4.21}_{-4.77}$	$-0.156(1)^{+0.13}_{-0.03}$	$-1.99(1)^{+0.30}_{-0.15}$	$-1.83(1)^{+0.08}_{-0.03}$

- Interference effects much larger than pure top mass effect
- Interference effect at NNLO cancels against NLO
- > Interference effect at NNLO larger than NLO scale variation (similar in HEFT but less severe)
- Interference NNLO scale variation increases compared to NLO
- > Similar effects for different top quark mass ($m_t \approx 170.979$ GeV)
- Improved convergence in mixed renormalization scheme compared to OS-scheme

- Effects of interference of top- and bottom-quark amplitudes on Higgs production in gluon-fusion at the LHC
 - PDF set: NNPDF31_nnlo_as_0118 NNPDF Collaboration `17
 - $\mu_R = \mu_F = m_H/2$ (central scale)
 - $m_H = 125 \text{ GeV} \Rightarrow m_t \approx 173.055 \text{ GeV}$ (OS-scheme) and m_b in \overline{MS} -scheme with $\overline{m}_b(\overline{m}_b) \approx 4.18 \text{ GeV}$
 - HEFT values obtained with SusHi Harlander, Liebler, Mantler `16

Order	$\sigma_{\rm HEFT} \ [{\rm pb}]$	$(\sigma_t - \sigma_{\text{HEFT}}) \text{ [pb]}$	$\sigma_{t \times b} \; [\text{pb}]$	$\sigma_{t \times b} \left(Y_{b,\overline{\mathrm{MS}}} \right) [\mathrm{pb}]$	$\sigma_{t \times b} \left(\overline{m}_b \right) [\text{pb}]$
		\checkmark	$\overline{s} = 13 \text{ TeV}$		
$\mathcal{O}(\alpha_s^2)$	+16.30	_	-1.975	-1.223	-1.118
LO	$16.30^{+4.36}_{-3.10}$	—	$-1.98^{+0.38}_{-0.53}$	$-1.22^{+0.29}_{-0.44}$	$-1.118^{+0.28}_{-0.43}$
$\mathcal{O}(\alpha_s^3)$	+21.14	-0.303	-0.446(1)	-0.623(1)	-0.647
NLO	$37.44_{-6.29}^{+8.42}$	$-0.303^{+0.10}_{-0.17}$	$-2.42^{+0.19}_{-0.12}$	$-1.85^{+0.26}_{-0.26}$	$-1.76^{+0.27}_{-0.28}$
$\mathcal{O}(\alpha_s^4)$	+9.72	+0.147(1)	+0.434(8)	+0.019(5)	+0.02(1)
NNLO	$47.16_{-4.77}^{+4.21}$	$-0.156(1)^{+0.13}_{-0.03}$	$-1.99(1)^{+0.30}_{-0.15}$	$-1.83(1)^{+0.08}_{-0.03}$	$-1.74(2)^{+0.13}_{-0.01}$

- Interference effects much larger than pure top mass effect
- Interference effect at NNLO cancels against NLO
- Interference effect at NNLO larger than NLO scale variation (similar in HEFT but less severe)
- Interference NNLO scale variation increases compared to NLO
- > Similar effects for different top quark mass ($m_t \approx 170.979$ GeV)
- Improved convergence in mixed renormalization scheme compared to OS-scheme
- > Similar pattern of corrections for m_b in \overline{MS} -scheme

preliminary

Summary and outlook

- The top-bottom interference contribution to the total Higgs production cross section was computed with *both* quarks renormalized in the OS-scheme
 - $\succ \mathcal{O}(\alpha_s^4)$ correction at 8 TeV: +0.167 pb
 - \succ $\mathcal{O}(\alpha_s^4)$ correction at 13 TeV: +0.434 pb
- **Ο**(1%) effect
- > NNLO correction at 13 TeV: $-1.99(1)^{+0.30}_{-0.15}$ pb compatible with previous estimate $-2.18^{+0.20}_{-0.20}$ pb Anastasiou, Penin `20
- > Top-quark and interference contribution not sensitive to small variations of the top-quark mass
- Interference shows signs of poor perturbative convergence
 - \blacktriangleright Better convergence in \overline{MS} -scheme for the bottom-quark mass or Yukawa coupling only
- Cross checks: at the differential level
 - Jones, Kerner, Luisoni `18
 - Caola, Lindert, Melnikov, et al. `18
 - Bonciani, Del Duca, Frellesvig, et al. 22
- > Next steps:
 - \blacktriangleright Complete calculation with quark masses renormalized in \overline{MS} -scheme
 - Consistent treatment of massive quarks in 4-flavor scheme
 - Top-charm interference contribution

Summary and outlook

- > The top-bottom interference contribution to the total Higgs production cross section was computed with both quarks renormalized in the OS-scheme
 - $\succ \mathcal{O}(\alpha_s^4)$ correction at 8 TeV: +0.167 pb

- $\succ \mathcal{O}(\alpha_s^4)$ correction at 13 TeV: +0.434 pb
- $\mathcal{O}(1\%)$ effect
- > NNLO correction at 13 TeV: $-1.99(1)^{+0.30}_{-0.15}$ pb compatible with previous estimate $-2.18^{+0.20}_{-0.20}$ pb Anastasiou, Penin 20
- Top-quark and interference contribution not sensitive to small variations of the top-quark mass \succ
- Interference shows signs of poor perturbative convergence
 - \blacktriangleright Better convergence in \overline{MS} -scheme for the bottom-quark mass or Yukawa coupling only

Cross checks: at the differential level			preliminary
	Order	$\sigma_{t imes b}$	[pb]
 Jones, Kerner, Luisonii 18 Caala, Lindort, Malnikov, et al. `18 		$\sqrt{s} = 13 \text{ Te}$	eV
Caola, Lindert, Melnikov, et al. 18		5 FS	4FS
Bonciani, Del Duca, Frellesvig, et al. 22	$\mathcal{O}(lpha_s^2)$	-1.975	-1.971
	LO	$-1.98\substack{+0.37\\-0.53}$	$-1.97\substack{+0.39\\-0.56}$
Next steps:	${\cal O}(lpha_s^3)$	-0.447(4)	-0.455(4)
\succ Complete calculation with quark masses renormalized in \overline{MS} -scheme	NLO	$-2.42_{-0.12}^{+0.19}$	$-2.43^{+0.21}_{-0.13}$
Consistent treatment of massive quarks in 4-flavor scheme	${\cal O}(lpha_s^4)$	+0.434(8)	+0.389(11)
> Ton-charm interference contribution	NNLO	$-1.99(1)^{+0.30}_{-0.15}$	$-2.04(1)^{+0.29}_{-0.14}$