Four Top Searches and Constraints on the Top Yukawa In ATLAS and CMS

12th Large Hadron Collider Physics Conference Boston, MA, USA June 4, 2024

Four Top Searches and Constraints on the Top Yukawa In ATLAS and CMS

12th Large Hadron Collider Physics Conference Boston, MA, USA June 4, 2024

g g g

999

Lee

عاووه

t

Four Top

- A very rare process in the SM •
 - $\sigma_{tttt} \sim 13.4$ fb
 - Challenges in theory and experiment •
- Tests our understanding of high-mass QCD
- Multitude of decay channels •
- Only recently passing the thresholds for Evidence and Observation •
- A probe for Top Yukawa, EFT measurements

gueeeee

Nick Manganelli

Rich Decay Landscape

- Same-Sign dilepton (SSDL) and multiplepton (3+, ML)
 - Most sensitive channels
 - Major backgrounds: ttZ, ttW, ttH •
- Opposite-Sign Dilepton (OSDL), Single Lepton (SL)
 - Major backgrounds: ttbb, ttjj (non-b), ttH •
- All Hadronic
 - Major backgrounds: QCD multijet, ttbb, ttjj

_INK

Nick Manganelli

Nick Manganelli

• $\sigma_{tttt} \sim 9 \text{fb} @ LO$

Nick Manganelli

- $\sigma_{tttt} \sim 9 \text{fb} @ \text{LO}$
- σ_{tttt} ~ 12fb @ NLO (QCD + EWK)
 - Large EWK Corrections: JHEP02 (2018) 031 •

Nick Manganelli

- $\sigma_{tttt} \sim 9 \text{fb} @ \text{LO}$
- $\sigma_{tttt} \sim 12$ fb @ NLO (QCD + EWK)
 - Large EWK Corrections: JHEP02 (2018) 031 •
- $\sigma_{tttt} \sim 13.4$ fb @ NLO (QCD + EWK) + NLL'
 - Phys Rev Lett. 131 (2023) 211901 (see Melissa van • Beekveld's talk at TOP2022)

- $\sigma_{tttt} \sim 9 \text{fb} @ \text{LO}$
- $\sigma_{tttt} \sim 12$ fb @ NLO (QCD + EWK)
 - Large EWK Corrections: JHEP02 (2018) 031 •
- $\sigma_{tttt} \sim 13.4$ fb @ NLO (QCD + EWK) + NLL'
 - Phys Rev Lett. 131 (2023) 211901 (see Melissa van • Beekveld's talk at TOP2022)
- Large modeling uncertainties in μ_F , μ_R and Parton Showering

Nick Manganelli

Link

tttt Introduction

- Heavy Flavor production (ttbb) •
 - Underestimated in simulation
 - See Luisa's talk

Link

tttt Introduction

- Heavy Flavor production (ttbb)
 - Underestimated in simulation
 - See Luisa's talk
- ttH, ttZ, ttW larger σ than tttt
 - ttW large NLO corrections •
 - Heavy-flavor, ISR, FSR modeling •

Link

tttt Introduction

- Heavy Flavor production (ttbb) •
 - Underestimated in simulation
 - See Luisa's talk
- ttH, ttZ, ttW larger σ than tttt •
 - ttW large NLO corrections •
 - Heavy-flavor, ISR, FSR modeling •

5

Comparable to experimental challenges in Jet Energy Scale/Resolution and b-tagging

Link

CMS *Preliminary* June 2021 POWHEG+PYTHIA8 - Measurement aMC@NLO+PYTHIA8(FXFX) $\delta_{\mathsf{stat.}}$ POWHEG+HERWIG++ $\delta_{\mathsf{stat.}} \oplus \delta_{\mathsf{syst.}}$ aMC@NLO+PYTHIA8 Fully hadronic $35.9 \, \text{fb}^{-1}$ PLB(803)2020 135285 $\begin{array}{c} \text{Dilepton} \\ \text{41.5 fb}^{-1} \end{array}$ arxiv:2012.09225 Dilepton $35.9 \, \mathrm{fb}^{-1}$ JHEP07(2020)125 m L+jets 35.9 fb $^{-1}$ JHEP07(2020)125 2 3 8 9 4 $\sigma_{\rm t\bar{t}b\bar{b}}\,[\rm pb]$

tttt Introduction

Nick Manganelli

Search Strategy

Isolate decay channel of interest via lepton multiplicity ٠

- Isolate decay channel of interest via lepton multiplicity •
- Reduce backgrounds via jet + b tag multiplicity cuts and H_T (signal: 4-12 hard jets)
 - H_T (significantly reduces lower-mass backgrounds) [JES/R]
 - b-tagging is central to isolating signal events •

- Isolate decay channel of interest via lepton multiplicity •
- Reduce backgrounds via jet + b tag multiplicity cuts and H_T (signal: 4-12 hard jets)
 - H_T (significantly reduces lower-mass backgrounds) [JES/R]
 - b-tagging is central to isolating signal events •
- Subdivide into various regions (usually via the jet and b tag mult.)

Search Strategy

- Isolate decay channel of interest via lepton multiplicity
- Reduce backgrounds via jet + b tag multiplicity cuts and H_T (signal: 4-12 hard jets)
 - H_T (significantly reduces lower-mass backgrounds) [JES/R]
 - b-tagging is central to isolating signal events •
- Subdivide into various regions (usually via the jet and b tag mult.)
- Perform simultaneous binned maximum likelihood fit of H_T or an MVA Classifier across Signal Regions (SRs) and Control Regions (CRs)

- SL + OSDL + SSDL + ML
- **BDT Event Classifiers** •

<u>JHEP 11 (2021) 118</u>

Nick Manganelli

Eur. Phys. J. C 80 (2020) 1085

- SL + OSDL + SSDL + ML
- **BDT Event Classifiers** •

JHEP 11 (2021) 118

Nick Manganelli

Eur. Phys. J. C 80 (2020) 1085

• SL + OSDL + SSDL + ML

7

BDT Event Classifiers

<u>JHEP 11 (2021) 118</u>

Nick Manganelli

Eur. Phys. J. C 80 (2020) 1085

• SL + OSDL + SSDL + ML

7

BDT Event Classifiers

JHEP 11 (2021) 118

Nick Manganelli

Eur. Phys. J. C 80 (2020) 1085

- SL + OSDL + SSDL + ML
- **BDT Event Classifiers**

7

G

Jniversity of Colorado

Boulder

JHEP 11 (2021) 118

Nick Manganelli

Eur. Phys. J. C 80 (2020) 1085

- **BDT Event Classifiers**

Gi

Boulder

Nick Manganelli

ATLAS, CMS

Jniversity of Colorado Boulder

G

8

Evidence ATLAS, CMS

//////

BDT Event Classifiers (SvB), Top Tagging •

8

Evidence ATLAS, CMS

- BDT Event Classifiers (Sve), "Top Tagging
- First combination of all lepton multiplicities (+All-Hadronic!) •

8

Evidence ATLAS, CMS

- BDT Event Classifiers (Sve), Top Tagging
- - AH novel data-driven background estimation: Autoregressive Flows

8

- BDT Event Classifiers (Sve), "Top Tagging
- First combination of all lepton multiplicities (+All-Hadronic!)

. .

AH - novel data-driven background estimation: Autoregressive Flows

Reconstruction Improvements Key to Observation

ATLAS MV2c10 to DL1r

University of Colorado Gr Boulder

10

Nick Manganelli

• SSDL + ML analysis

University of Colorado Boulder

10

Nick Manganelli

• SSDL + ML analysis

6,

10

Nick Manganelli

• SSDL + ML analysis

, L L L

Boulder

Observation ATLAS, CMS

مل

Boulder

Nick Manganelli

University of Colorado G Boulder

11

 $\sigma_{\text{t+t+t}} \pm \text{tot.} (\pm \text{stat.} \pm \text{syst.})$ Obs. Sig. 17.7 $^{+4.4}_{-4.0}$ ($^{+3.7}_{-3.5}$ $^{+2.3}_{-1.9}$) fb 5.6 σ

Phys. Lett. B 847 (2023) 138290

- SSDL + ML analysis
- ttW+, ttW-, 1b, HF, QmisID CRs •

University of Colorado Boulder

12

- SSDL + ML analysis
- ttW+, ttW-, 1b, HF, QmisID CRs

12

Nick Manganelli

- SSDL + ML analysis

Nick Manganelli

ATLAS, CMS

Event Graph Neural Net Classifier (GNN) •

Event Graph Neural Net Classifier (GNN) •

Boulder

Event Graph Neural Net Classifier (GNN) •

Boulder

EPJC 83 (2024) 496

≥ 10

9

Nick Manganelli

- Next Four Top Searches ٠
 - Enhanced 13.6 TeV Production (tt less) •
 - Better: b-tagging, ML, BKG-estimation •
 - Dedicated hadronic-tau analyses •

- Next Four Top Searches •
 - Enhanced 13.6 TeV Production (tt less) •
 - Better: b-tagging, ML, BKG-estimation
 - Dedicated hadronic-tau analyses •
- Three tops •
 - tttJ + tttW production modes
 - $\sigma_{ttt} = 2fb$
 - Expect future combination analyses to benefit

Nick Manganelli

- Next Four Top Searches •
 - Enhanced 13.6 TeV Production (tt less) •
 - Better: b-tagging, ML, BKG-estimation
 - Dedicated hadronic-tau analyses
- Three tops •
 - tttJ + tttW production modes
 - $\cdot \sigma_{ttt} = 2fb$

ل ال

Nick Manganelli

- Next Four Top Searches •
 - Enhanced 13.6 TeV Production (tt less) •
 - Better: b-tagging, ML, BKG-estimation
 - Dedicated hadronic-tau analyses
- Three tops •
 - tttJ + tttW production modes
 - $\sigma_{ttt} = 2fb$
 - tttJ + tttW production modes $\sigma_{ttt} = 2fb$ Expect future combination analyses to benefit

ل ال

Nick Manganelli

15

Nick Manganelli

tttt Sensitive to both coupling strength and CP properties •

15

- tttt Sensitive to both coupling strength and CP properties •
 - Complementary to extraction from ttH measurements •

15

- tttt Sensitive to both coupling strength and CP properties •
 - Complementary to extraction from ttH measurements •
 - Upper limit of 1.9 x SM in CMS •

15

Interpretations

ري ا

- tttt Sensitive to both coupling strength and CP properties •
 - Complementary to extraction from ttH measurements •
 - Upper limit of 1.9 x SM in CMS •
 - Simultaneous fit of CP-odd/even in ATLAS

CMS Supplementary

Calculated from combination

Observed cross sectior

JHEP 02 (2018) 031

Predicted cross section

Observed upper lim

(fb)

ATLAS+CMS Prelimin	nary	√s = 13 TeV, Novem	ber 202
σ _{tttt} = 12.0 ^{+2.2} _{-2.5} (scale) fb JHEP 02 (2018) 031 NLO(QCD+EW)	$\sigma_{t\bar{t}t\bar{t}} = 13.4^{+1.0}_{-1.8}$ (scale arXiv:2212.03259 NLO(QCD+EW)+NLL	e+PDF) fb + + + + + + + + + + + + + + + + + +	
ATLAS, 1L/2LOS, 139 fb ⁻¹ JHEP 11 (2021) 118	⊨	$\sigma_{t\bar{t}t\bar{t}\bar{t}} \pm tot. (\pm stat. \pm syst.$ 26 $^{+17}_{-15}$ (±8 $^{+15}_{-13}$) fb) Obs. (1.9 (
ATLAS, comb., 139 fb ⁻¹ JHEP 11 (2021) 118	┠┼╶┯╌┼┥	24 ⁺⁷ ₋₆ (±4 ⁺⁵ ₋₄) fb	4.7
CMS, 1L/2LOS/all-had, 138 f PLB 844 (2023) 138076	b ⁻¹ ► + -	■ 36 ⁺¹² ₋₁₁ (±7 ⁺¹⁰ ₋₈) fb	3.9 (
CMS, comb., 138 fb ⁻¹ PLB 844 (2023) 138076	∦ ▼ ∦	17±5 (±4 ±3) fb	4.0
ATLAS, 2LSS/3L, 140 fb ⁻¹ EPJC 83 (2023) 496	₽ ↓ - ■ - ↓ 1	22.5 ^{+6.6} _{-5.5} (^{+4.7 +4.6} _{-4.3 -3.4}) fb	6.1 c
CMS, 2LSS/3L, 138 fb ⁻¹ PLB 847 (2023) 138290	┣━━━╫	17.7 $^{+4.4}_{-4.0}$ ($^{+3.7}_{-3.5}$ $^{+2.3}_{-1.9}$) fb	5.6 0
0	20 40	60 80 10 σ _{+••} [fb]	. 00

- Four top production observed!
 - σ_{tttt} compatible with SM
 - But measured above expectation in many channels

16

ATLAS+CMS Prelimin	nary	/		√s = 13 TeV, Novemb	oer 202
σ _{tttt} = 12.0 ^{+2.2} _{-2.5} (scale) fb JHEP 02 (2018) 031 NLO(QCD+EW)	σ _{tītī} arXi NLC	= 13.4 ^{+1.0} -1.8 v:2212.032 D(QCD+EW) 3 (scale+ 259 /)+NLL'	PDF) fb + + + + + + + + + + + + + + + + + +	1
ATLAS, 1L/2LOS, 139 fb ⁻¹ JHEP 11 (2021) 118	<u>-</u>		—	$\sigma_{t\bar{t}t\bar{t}} \pm tot. (\pm stat. \pm syst.)$ 26 $^{+17}_{-15}$ (±8 $^{+15}_{-13}$) fb	Obs. 3
ATLAS, comb., 139 fb ⁻¹ JHEP 11 (2021) 118		┠┼╶╤╶┼┥		24 ⁺⁷ ₋₆ (±4 ⁺⁵ ₋₄) fb	4.7
CMS, 1L/2LOS/all-had, 138 f PLB 844 (2023) 138076	b⁻¹	┣┿╾	•	36 ⁺¹² ₋₁₁ (±7 ⁺¹⁰ ₋₈) fb	3.9 (
CMS, comb., 138 fb ⁻¹ PLB 844 (2023) 138076	H	F ∦		17±5 (±4 ±3) fb	4.0
ATLAS, 2LSS/3L, 140 fb ⁻¹ EPJC 83 (2023) 496		₽┼╌═╾┼┨		22.5 ^{+6.6} (^{+4.7 +4.6}) fb	6.1 c
CMS, 2LSS/3L, 138 fb ⁻ ' PLB 847 (2023) 138290		┣╼╾╢		17.7 $^{+4.4}_{-4.0}$ ($^{+3.7}_{-3.5}$ $^{+2.3}_{-1.9}$) fb	5.6 (
			.		
0		20	40	60 80 100 σ [fb]	0 -

- Four top production observed!
 - σ_{tttt} compatible with SM
 - But measured above expectation in many channels
- Challenging phase space, where measurement of the major backgrounds are themselves frontier topics, and modeling is evolvin
 - Exciting region for novel background-estimation techniques, MI event classifiers, simultaneous measurements, and seeing the benefit of improved reconstruction techniques
 - Overlap with ttbb, ttH, ttW, ttZ, ttt measurements/searches

16

	ATLAS+CMS Prelimi	nary	1		√s = 13 [°]	TeV, Nov	embe	er 20
	σ _{tītī} = 12.0 ^{+2.2} _{-2.5} (scale) fb JHEP 02 (2018) 031 NLO(QCD+EW)	σ _{tītī} = arXiv NLO	= 13.4 ^{+1.0} -1.8 /:2212.032 (QCD+EW	(scale+ 59 ')+NLL'	PDF) fb	⊢ ⊢ tot. sta	, ¦ t.	
	ATLAS, 1L/2LOS, 139 fb ⁻¹ JHEP 11 (2021) 118				$\sigma_{t\bar{t}t\bar{t}} \pm tot$ 26 $^{+17}_{-15}$ (. (± stat. ± s (±8 ⁺¹⁵ ₋₁₃) fb	yst.) (Obs. 1.9
	ATLAS, comb., 139 fb ⁻¹ JHEP 11 (2021) 118		⊦ , , ,		24 ⁺⁷ (±	±4		4.7
ng	CMS, 1L/2LOS/all-had, 138 PLB 844 (2023) 138076	fb⁻¹	₽-+	•	36 ⁺¹² ₋₁₁ ((±7 ⁺¹⁰ ₋₈) fb		3.9
L	CMS, comb., 138 fb ⁻¹ PLB 844 (2023) 138076	H	.▼ .∦		17±5 (:	±4 ±3) fb		4.0
	ATLAS, 2LSS/3L, 140 fb ⁻¹ EPJC 83 (2023) 496		₩╼╌₩		22.5 ^{+6.}	$^{.6}_{.5}(^{+4.7}_{-4.3}^{+4.6}_{-3.4})$	fb	6.1
	CMS, 2LSS/3L, 138 fb ⁻¹ PLB 847 (2023) 138290		┝╼╾╢		17.7 ^{+4.}	.4 (+3.7 +2.3 .0 (3.51.9)	fb	5.6
	0		20	40	60 σ _{tītī} [fb	80]	100	

- Four top production observed!
 - σ_{tttt} compatible with SM
 - But measured above expectation in many channels
- Challenging phase space, where measurement of the major backgrounds are themselves frontier topics, and modeling is evolvin
 - Exciting region for novel background-estimation techniques, MI event classifiers, simultaneous measurements, and seeing the benefit of improved reconstruction techniques
 - Overlap with ttbb, ttH, ttW, ttZ, ttt measurements/searches
- More data coming @ 13.6 TeV

16

	ATLAS+CMS Prelimi	nary	1		√s = 13 [°]	TeV, Nov	embe	er 20
	σ _{tītī} = 12.0 ^{+2.2} _{-2.5} (scale) fb JHEP 02 (2018) 031 NLO(QCD+EW)	σ _{tītī} = arXiv NLO	= 13.4 ^{+1.0} -1.8 /:2212.032 (QCD+EW	(scale+ 59 ')+NLL'	PDF) fb	⊢ ⊢ tot. sta	, ¦ t.	
	ATLAS, 1L/2LOS, 139 fb ⁻¹ JHEP 11 (2021) 118				$\sigma_{t\bar{t}t\bar{t}} \pm tot$ 26 $^{+17}_{-15}$ (. (± stat. ± s (±8 ⁺¹⁵ ₋₁₃) fb	yst.) (Obs. 1.9
	ATLAS, comb., 139 fb ⁻¹ JHEP 11 (2021) 118		⊦ , , ,		24 ⁺⁷ (±	±4		4.7
ng	CMS, 1L/2LOS/all-had, 138 PLB 844 (2023) 138076	fb⁻¹	₽-+	•	36 ⁺¹² ₋₁₁ ((±7 ⁺¹⁰ ₋₈) fb		3.9
L	CMS, comb., 138 fb ⁻¹ PLB 844 (2023) 138076	H	.▼ .∦		17±5 (:	±4 ±3) fb		4.0
	ATLAS, 2LSS/3L, 140 fb ⁻¹ EPJC 83 (2023) 496		₩╼╌₩		22.5 ^{+6.}	$^{.6}_{.5}(^{+4.7}_{-4.3}^{+4.6}_{-3.4})$	fb	6.1
	CMS, 2LSS/3L, 138 fb ⁻¹ PLB 847 (2023) 138290		┝╼╾╢		17.7 ^{+4.}	.4 (+3.7 +2.3 .0 (3.51.9)	fb	5.6
	0		20	40	60 σ _{tītī} [fb	80]	100	

- Four top production observed!
 - σ_{tttt} compatible with SM
 - But measured above expectation in many channels
- Challenging phase space, where measurement of the major backgrounds are themselves frontier topics, and modeling is evolvin
 - Exciting region for novel background-estimation techniques, MI event classifiers, simultaneous measurements, and seeing the benefit of improved reconstruction techniques
 - Overlap with ttbb, ttH, ttW, ttZ, ttt measurements/searches
- More data coming @ 13.6 TeV
- Rich potential for Yukawa and EFT extraction

16

• See Jack's talk (Thursday, 10:18, ISEC Room 140)

	ATLAS+CMS Prelimi	nary	1		√s = 13 [°]	TeV, Nov	embe	er 20
	σ _{tītī} = 12.0 ^{+2.2} _{-2.5} (scale) fb JHEP 02 (2018) 031 NLO(QCD+EW)	σ _{tītī} = arXiv NLO	= 13.4 ^{+1.0} -1.8 /:2212.032 (QCD+EW	(scale+ 59 ')+NLL'	PDF) fb	⊢ ⊢ tot. sta	, ¦ t.	
	ATLAS, 1L/2LOS, 139 fb ⁻¹ JHEP 11 (2021) 118				$\sigma_{t\bar{t}t\bar{t}} \pm tot$ 26 $^{+17}_{-15}$ (. (± stat. ± s (±8 ⁺¹⁵ ₋₁₃) fb	yst.) (Obs. 1.9
	ATLAS, comb., 139 fb ⁻¹ JHEP 11 (2021) 118		⊦ , , ,		24 ⁺⁷ (±	±4		4.7
ng	CMS, 1L/2LOS/all-had, 138 PLB 844 (2023) 138076	fb⁻¹	₽-+	•	36 ⁺¹² ₋₁₁ ((±7 ⁺¹⁰ ₋₈) fb		3.9
L	CMS, comb., 138 fb ⁻¹ PLB 844 (2023) 138076	H	.▼		17±5 (:	±4 ±3) fb		4.0
	ATLAS, 2LSS/3L, 140 fb ⁻¹ EPJC 83 (2023) 496		₩╼╌₩		22.5 ^{+6.}	$^{.6}_{.5}(^{+4.7}_{-4.3}^{+4.6}_{-3.4})$	fb	6.1
	CMS, 2LSS/3L, 138 fb ⁻¹ PLB 847 (2023) 138290		┝╼╾╢		17.7 ^{+4.}	.4 (+3.7 +2.3 .0 (3.51.9)	fb	5.6
	0		20	40	60 σ _{tītī} [fb	80]	100	

$$egin{array}{lll} egin{array}{c} & & & \ & \sigma_{tar{t}\,tar{t}} & = \sigma_{tar{t}\,tar{t}}^{SM} + rac{1}{\Lambda^2} \end{array} \end{array}$$

- tttt is sensitive to several Dim-6 contact operators in the EFT framework
- CMS tttt search (2016 OSDL + SL) recasts tttt upper limit

- ATLAS result parameterizes each GNN bin's tttt contribution
 - Set 95% CL upper limit on coefficients of the 4 sensitive terms individually (3 set to SM) = 0 for fit)

Dedicated EFT searches contain tttt-enriched Signal Regions JHEP 12 (2023) 068

18

 $\sum_{i} C_i \sigma_i^{(1)} + rac{1}{\Lambda^4} \sum_{i < j} C_i C_j \sigma_{i,j}^{(2)}$

<u>EPJC 83 (2024) 496</u>

Operator	Expected $C_k/\Lambda^2~(\text{TeV}^{-2})$	Observed (Te
$\mathcal{O}_{ ext{tt}}^1$	[-2.0, 1.8]	[-2.1, 2.0]
$\mathcal{O}_{ ext{QQ}}^{1}$	[-2.0, 1.8]	[-2.2,2.0]
$\mathcal{O}_{\mathrm{Qt}}^1$	[-3.3, 3.2]	[-3.5, 3.5]
$\mathcal{O}_{\mathrm{Qt}}^{8}$	[-7.3, 6.1]	[-7.9, 6.6]

JHEP 11 (2019) 082

$| O_{QQ}^{1} | O_{Qt}^{1} | O_{tt}^{1} | O_{Qt}^{8} |$ | 5.3 | 3.3 | 2.4 | 8.8 | $(TeV)^{-2}$

Inner colored bars statistical uncertainty, outer narrow bars statistical+systematic uncertainty

Light to Dark colored bars: 2.76, 5.02, 7, 8, 13, 13.6 TeV, Black bars: theory prediction

19

 σ [fb]

Measured cross sections and exclusion limits at 95% C.L. See here for all cross section summary plots

University of Colorado Boulder

- 138 fb (2.76,5.02,7,8,13,13.6 Te	V)		
σ (inelastic) = 6.8e+13 fb	41 μb⁻⁺		
	36 pb ^{−1}		
	36 pb ⁻¹		
	5 fb ⁻¹		
	177 4-1		
	ן צט וט -		
	19 fb ⁻¹ 36 fb ⁻¹ 302 pb ⁻¹ 5 fb ⁻¹ 20 fb ⁻¹ 137 fb ⁻¹ 20 fb ⁻¹ 137 fb ⁻¹ 138 fb ⁻¹ 138 fb ⁻¹ 138 fb ⁻¹ 138 fb ⁻¹ 138 fb ⁻¹ 137 fb ⁻¹		
JHEP 02 (2022) 10	7	σ (tZq)	= 8.7e+02
PRL 110 (2013) 17	72002	$\sigma(\text{ttZ}) = 2.8\text{e}+02 \text{ fb}$	-
JHEP 01 (2016) 09	6	$\sigma(\text{ttZ}) = 2.4\text{e}+02$	fb 🗖
JHEP 03 (2020) 05	6	$\sigma(ttZ)$	= 9.5e+02
PRL 121 221802 (2018)	$\sigma(t\gamma)$	= 1.1e+03
JHEP 01 (2016) 09	6	$\sigma(ttW) = 3.8e+02$	fb 💻
JHEP 07 (2023) 21	.9	$\sigma(ttW) = 8$	3.7e+02 fb
TOP-22-008		$\sigma(tWZ) = 3.7e + 02 \text{ fb}$	•
Submitted to PLB		$\sigma(\text{tttt}) = 18 \text{ fb}$	
	20 fb ⁻¹		

Evidence (ATLAS)

Region	Channel	N_{j}	N_b	Other requirements	Fitted variable
SR	2LSS/3L	≥ 6	≥ 2	$H_{ m T} > 500$	BDT
CR Conv.	$e^\pm e^\pm e^\pm \mu^\pm$	$4 \leq N_j < 6$	≥ 1	$m_{ee}^{ ext{CV}} \in [0, 0.1 ext{ GeV}]$	$m_{ee}^{ m PV}$
				$200 < H_{ m T} < 500~{ m GeV}$	
CR HF e	eee eeµ	-	=1	$100 < H_{ m T} < 250~{ m GeV}$	Counting
$\operatorname{CR}\operatorname{HF}\mu$	$e\mu\mu$ $\mu\mu\mu$	-	=1	$100 < H_{ m T} < 250~{ m GeV}$	Counting
CR ttW	$e^{\pm}\mu^{\pm} \mu^{\pm}\mu^{\pm} $	≥ 4	≥ 2	$m_{ee}^{ ext{CV}} ot \in [0, 0.1 ext{ GeV}]$, $ \eta(e) < 1.5$	$\Sigma p_{ m T}^\ell$
				For $N_b=2$, $H_{ m T}<500~{ m GeV}$ or $N_j<6$	
				For $N_b \geq 3$, $H_{ m T} < 500~{ m GeV}$	

Eur. Phys. J. C 80 (2020) 1085

Evidence (ATLAS)

Jniversity of Colorado

Boulder

G,

21

ncertainty source	$\Delta \sigma_{t\bar{t}t}$	_{<i>ī</i>} [fb]
gnal Modelling		
\bar{t} modelling	+8	-3
ackground Modelling		
$+\geq 1b$ modelling	+8	-7
$+\geq 1c$ modelling	+5	-4
+jets reweighting	+4	-3
ther background modelling	+4	-3
light modelling	+2	-2
xperimental		
t energy scale and resolution	+6	-4
tagging efficiency and mis-tag rates	+4	-3
C statistical uncertainties	+2	-2
iminosity	<	1
ther uncertainties	<	1
otal systematic uncertainty	+15	-12
atistical uncertainty	+8	-8
otal uncertainty	+17	-15

Nick Manganelli

1	L

≥10j

Evidence (ATLAS)

22

All-Hadronic Background Estimation - ABCDnn

Jniversity of Colorado Boulder

23

See also: normalising flows in ttt

Novel application of an Extended ABCD Method combined with Autoregressive Flows (composition of normalizing flows)

- EPJC 81 (2021) 643, arxiv:1804.00779, arXiv:2008.03636
- Upcoming CMS Publication (CMS-MLG-23-004)

Neural Network learns to conditionally transform tt simulation source distribution to a target distribution

- Trained autoregressively on the 5 control regions to map simulated tt distributions onto tt + QCD distributions using data
- Method validated using shifted set of 5 VCRs + 1 VR •
- Simultaneously transforms multiple distributions (H_T and event BDT)

Evidence (CMS) OSDL

ttti

///// Prefit und

101 fb⁻¹ (13 Te'

///// Prefit un

0.8

101 fb⁻¹ (13 TeV)

///// Prefit und

101 fb⁻¹ (13 TeV

400

101 fb⁻¹ (13 TeV)

University of Colorado Boulder

[6,

24

Nick Manganelli

CMS

Supplementary, OSDL

Evidence (CMS) All-Hadronic

_		36 fb ^{−1} (13 TeV)
਼ੁੱ <mark>ਚ</mark> 1500		∮ Data
tts /		QCD + tt
ອ 1250	- Supplementary	other backgrounds
ш 1000		
1000	$N_{\rm RT} = 1, N_{\rm BT} = 0$ 700 $\leq H_{\rm T} < 800 {\rm GeV}$	/ ///// Prefit unc.
750	- · · · · · · · · · /////////	
-		
500	- "////////////////////////////////////	
250		
230	///// /// //////	·····
<mark>ب</mark> 1.50	· · · · · · · · · • • • • • • • • • • • • • • 	┍╼╕╾╕┥┥┥┙┙┙
Ë EX		
<u>ജ</u> 1.00		
0.75	0 0.2 0.4	0.6 0.8 1.0
		BDT discriminant
. <u> </u>		
d / s	CMS	\oint Data
tie 400	Supplementarv	other backgrounds
э́н Ш	All-hadronic	tt + H and tt + V
300	$N_{\rm RT} = 1, N_{\rm BT} = 0$	
-	1100 ≤ <i>H</i> _T < 1200 G	eV ////. Prefit unc.
200		
100		
- 41		
<u>e</u> 1.50		
Ö 0 75		
0.7 0.0	0.2 0.4	0.6 0.8 1.0
		DDT discriminant
		36 fb ^{−1} (13 TeV)
bin [• Data
ts /	CMS	$\overrightarrow{QCD} + t\overline{t}$
ອີ້ 150	Supplementary	other backgrounds
Ш -	All-nadronic	tt + H and tt + V = $\frac{1}{100}$
-	N _{RT} = 1, N _{BT} ≥ 1 700 < H _T < 1400 Ge	V ////. Prefit unc.
100		-
F		
50-		
-		
- 1 50 ⁻		
g 1.00		
ŏ _{0.75}		
0.0	J U.Z U.4	

$N_{ m RT}$	$N_{ m BT}$	$H_{\rm T}$ range (GeV)
1	0	700–800
1	0	800–900
1	0	900–1000
1	0	1000-1100
1	0	1100–1200
1	0	1200–1300
1	0	1300–1500
1	0	≥ 1500
1	≥ 1	700–1400
1	≥ 1	$\geq \! 1400$
<u>≥2</u>	≥ 0	700–1100
≥ 2	≥ 0	≥ 1100

25

University of Colorado

Boulder

G

36 fb⁻¹ (13 TeV)

Data

CMS

Evidence (CMS) Semi-Leptonic

26

راكا

Boulder

Phys. Lett. B 847 (2023) 138290

Observation (CMS)

L.

Boulder

Observation (ATLAS)

G University of Colorado Boulder

29

EFT

- Dedicated EFT Results contain tttt-enriched SF •
- Simultaneously fit 26 Wilson Coeffficients + NP

30

•	L			
	Г	Т		

	Γ		Other WCs	profiled (2σ)		138 fb⁻¹ ((13 TeV)
		Other WCs profiled (10) Other WCs fixed to SM (2σ) Other WCs fixed to SM (1σ)			CMS		
	$C_{t}^{T(\ell)}$					I	
	$C_{+}^{S(\ell)}$				*****		
	$C_{1}^{(\ell)}$						
	$C^{(\ell)}$				***********		
	$C^{(\ell)}$						
SUO Y	$\mathbf{Q}_{\mathbf{Q}\mathbf{e}}$						
	$\mathcal{L}_{Q\ell}$						
		·····			******	HF	
	$c_{\varphi t} \div 2$			·····			
NPS	c _{φtb}			•••••••			
	$c_{\varphi Q}^3$						
	C _{bW}						
	$C_{tG} \times 5$						
	$c_{\alpha\Omega}^{-} \div 2$				******		
	$\mathcal{C}_{t/p} \div 2$						
	οιφ · =			-			
	C _{Qt}				***************	*****	
	C _{Qt}			••••••••••••••••••••••••••••••••••••••			
				•••			
	$c_{\rm tt}^1$						
	$c_{ m tq}^{ m 8}$						
	C _{Qa} ¹⁸						
	$C_{t_{c}}^{1} \times 5$				*****		
	$C_{0}^{11} \times 5$				*****		
	$C_{Qq}^{38} \times 5$						
				-			
	C _{Qq} × D						
	-6	6	-4	-2	0 Wilson c	2 :oefficient /	4 6 Λ ² [TeV ⁻²]
		$) \cap \cap$					
JUEL		<u>102</u>	<u>.3) L</u>	<u>100</u>			

Nick Manganelli

Observation (ATLAS)

31

$ \begin{array}{c c c c c c } \mbox{CR Low } & Ss, eor e \mu & 4 \le N_j < 6 & \geq 1 & \ell_1 \mbox{or } \ell_2 \mbox{ and } \ell_2 \mbox{ are not from photon conversion } & Event yield \\ \hline \mbox{CR Mat. Conv.} & Ss, eor e \mu & 4 \le N_j < 6 & \geq 1 & \ell_1 \mbox{or } \ell_2 \mbox{ are not from photon conversion } & Event yield \\ \hline \mbox{CR HF} \mu & \\ \mbox{prime} & \mbox{prime} & \\ \mbox{prime} & \mbox{prim} & \mbox{prime} & \\ \mbox{prim} & \mbox$	Region	Channel	$N_{ m j}$	N_b	Other selection	Fitted variable
Image: constraint of the state of the st	CR Low m_{γ^*}	SS, ee or e μ	$4 \leq N_{ m j} < 6$	≥ 1	$\ell_1 { m or} \ell_2$ is from virtual photon ($\gamma^{m{*}}$) decay	Event yield
CR Mat. Conv.SS, ee or $\mu\mu$ $4 \le N_J < 6$ ≥ 1 ℓ_1 or ℓ_2 is from photon conversionEventy ieldCR HF μ $\mu\mu$ or $\mu\mu\mu$ ≥ 1 1^0 $100 < H_T < 300 GeV$ $\overline{H^{mis} > 50 GeV}$ CR HF μ ee or ee μ ≥ 1 $100 < H_T < 275 GeV$ $\overline{H^{mis} > 35 GeV}$ CR HF μ ee or ee μ ≥ 1 $100 < H_T < 275 GeV$ $\overline{H^{mis} > 35 GeV}$ CR $t\bar{t}$ W ⁺ + jets S_2 P_1^A P_2^A P_2^A CR $t\bar{t}$ W ⁺ + jets S_2 P_1^A P_1^A $\overline{H^{mis} > 35 GeV}$ CR $t\bar{t}$ W ⁺ + jets S_2 P_1^A P_1^A $\overline{H^{mis} > 23 H_T < 500 GeV N_J < 6}$ M^{-1} $\overline{H^{-1}}$ $\overline{H^{-1}}$ $\overline{H^{-1}}$ $\overline{H^{-1}}$ CR $t\bar{t}$ W ⁻⁺ + jets S_2 P_1^A P_1^A $\overline{H^{-1}}$ M^{-1} $\overline{H^{-1}}$ $\overline{H^{-1}}$ $\overline{H^{-1}}$ $\overline{H^{-1}}$ M^{-1} $\overline{H^{-1}}$ $\overline{H^{-1}}$ <td< td=""><td></td><td></td><td></td><td>$\ell_1 { m and} \ell_2$ are not from photon conversion</td></td<>					$\ell_1 { m and} \ell_2$ are not from photon conversion	
$ \begin{array}{c} \mbox{CR} \mbox{HF} \mbox{μ} \\ \mbox{CR} \mbox{HF} \mbox{μ} \\ $\mu$$	CR Mat. Conv.	SS, ee or e μ	$4 \leq N_{ m j} < 6$	≥ 1	$\ell_1 { m or} \ell_2$ is from photon conversion	Event yield
Image: brack brak brack brak brack brack brack brack brack brack brack brack br	$\operatorname{CR}\operatorname{HF}\mu$	e $\mu\mu$ or $\mu\mu\mu$	≥ 1	= 1	$100 < H_{ m T} < 300{ m GeV}$	
Image: constant of the series of the serie					$E_{\mathrm{T}}^{\mathrm{miss}} > 50\mathrm{GeV}$	
$ \begin{array}{ c c c } \mbox{CR HF e} \\ \mbox{Pi e} \\$					Total charge $=\pm 1$	
Image: matrix shows the series of the series shows the series of the series shows the serie	CR HF e	eee or ee μ	≥ 1	= 1	$100 < H_{ m T} <$ 275 GeV	$p_{\mathrm{T}}^{\ell_3}$
Image: matrix state					$E_{ m T}^{ m miss} > 35{ m GeV}$	
$ \begin{split} & Rf\bar{t}\bar{t}\bar{t}\bar{t}\bar{t}\bar{t}\bar{t}t$					Total charge $=\pm 1$	
Image: series of the	CR $tar{t}W^+$ +jets	SS, e μ or $\mu\mu$	≥ 4	≥ 2	$ \eta(e) < 1.5$	$N_{ m j}$
Image: series of the series					when $N_b=2$: $H_{ m T}<500$ GeV or $N_j<6$	
Image: constraint of the sector of the se					when $N_b \geq 3$: $H_{ m T} < 500$ GeV	
$ \begin{array}{c} \mbox{CR}\ensuremath{\bar{t}}\ensuremath{W}^{-}\ensuremath{+}\ensuremath{\bar{t}}\ensuremath{T}\en$					Total charge > 0	
Image: here is a stand basic ba	$\operatorname{CR} t ar{t} W^-$ +jets	SS, e μ or $\mu\mu$	≥ 4	≥ 2	$ \eta(e) < 1.5$	$N_{ m j}$
when $N_b \ge 3: H_T < 500 \text{GeV}$ CR 1b(+) 2LSS+3L ≥ 4 $= 1$ $\frac{1}{1 \text{ and } \ell_2 \text{ are not from photon conversion}}}{H_T > 500 \text{GeV}}$ N_j CR 1b(-) 2LSS+3L ≥ 4 $= 1$ $\frac{1}{1 \text{ and } \ell_2 \text{ are not from photon conversion}}}{1 \text{ total charge > 0}}$ N_j CR 1b(-) 2LSS+3L ≥ 4 $= 1$ $\frac{1}{1 \text{ and } \ell_2 \text{ are not from photon conversion}}}{1 \text{ total charge < 0}}$ N_j SR 2LSS+3L ≥ 6 ≥ 2 $H_T > 500 \text{GeV}$ M_j					when $N_b=2$: $H_{ m T}<500$ GeV or $N_j<6$	
Image: constraint of the symbol sy					when $N_b \geq 3$: $H_{ m T} < 500$ GeV	
$ \begin{array}{c} \mbox{CR1b(+)} \\ \mbox{CR1b(-)} \\ \mbox{CR1b(-)} \\ \mbox{Maximum} \end{array} \end{array} \begin{array}{c} \begin{tmatrix} \geq 4 \\ \geq 4 \\ \hline \mbox{Maximum} \end{array} \end{array} \\ \begin{array}{c} \geq 4 \\ \sum 2 \\$					Total charge < 0	
Hr > 500 GeVTotal charge > 0CR 1b(-)Pure PrimePure Pr	CR 1b(+)	2LSS+3L	≥ 4	=1	ℓ_1 and ℓ_2 are not from photon conversion	$N_{ m j}$
CR 1b(-)ZLSS+3L ≥ 4 $= 1$ ℓ_1 and ℓ_2 are not from photon conversion N_j R2LSS+3L ≥ 6 ≥ 2 $H_T > 500 \text{ GeV}$ $H_T > 500 \text{ GeV}$ $H_T > 500 \text{ GeV}$ SR2LSS+3L ≥ 6 ≥ 2 $H_T > 500 \text{ GeV}$ GNN score					$H_{ m T} > 500{ m GeV}$	
CR 1b(-)2LSS+3L ≥ 4 $= 1$ $\ell_1 \text{ and } \ell_2 \text{ are not from photon conversion}$ N_j $H_T > 500 \text{ GeV}$ SR2LSS+3L ≥ 6 ≥ 2 $H_T > 500 \text{ GeV}$ GNN score					Total charge > 0	
H Total charge < 0 $H_T > 500 \text{ GeV}$ SR2LSS+3L ≥ 6 ≥ 2 $H_T > 500 \text{ GeV}$ GNN score	CR 1b(-)	2LSS+3L	≥ 4	= 1	ℓ_1 and ℓ_2 are not from photon conversion	$N_{ m j}$
SR2LSS+3L ≥ 6 Total charge < 0Total charge < 0SR2LSS+3L ≥ 6 ≥ 2 $H_T > 500 \text{GeV}$ GNN score					$H_{ m T} > 500{ m GeV}$	
SR 2LSS+3L ≥ 6 ≥ 2 $H_{ m T} > 500 { m GeV}$ GNN score					Total charge < 0	
	SR	2LSS+3L	≥ 6	≥ 2	$H_{ m T} > 500{ m GeV}$	GNN score

Nick Manganelli

