

## Jing Wang (CERN)

June 26, 2023

Rencontres QGP France Bagnoles de l'Orne, France

Jing Wang, CMS Overview, QGP France (Jun 26, 2023)



## CMS Overview



## HI Physics Programs at CMS

A variety of probes sensitive to different structures of QGP



## [Dileptons] Onia, EW

Spectra Open HF

[LLR is among major contributors]

Jing Wang, CMS Overview, QGP France (Jun 26, 2023)

[High p<sub>T</sub>] Jets, photons



## Flow Correlation





## HI Physics Programs at CMS

Heavy-ion data not only for QGP

## Double-parton scatterings

Multiple interactions

> Dileptons Onia, EW

## Medium modification

Spectra Open HF

Jing Wang, CMS Overview, QGP France (Jun 26, 2023)





High pt Jets, photons

QGP

QED (B)SM  $\gamma\gamma \rightarrow \gamma\gamma, \gamma\gamma \rightarrow a/G \rightarrow \gamma\gamma$  $(g-2)_{\tau}, \gamma\gamma \rightarrow ee$ High photon flux

Forward UPC

Flow Correlation Strong B field

Monopole

Low pile-up, low trigger thresholds







## nPDF and Initial States

## Before collisions (two pancakes of nucleons)

Collisions (the harder, the earlier)

A. 8 .

18 m

QGP emergence Itons of soft scatteri

**Relativistic heavy-ion collisions** 

Quark Gluon Plasma Mesons

CMS

Yen-Jie Lee, Andre S. Yoon and Wit Busza

Jing Wang, CMS Overview, QGP France (Jun 26, 2023)

Cool down wh

### What is the nuclear matter like before QGP emergence? Important input to models







## **Constrain nPDF Past Success**

### Quark distribution

- EW bosons & DY in pPb [PLB 2020] [JHEP 2021] [PRL 2021]
  - Significant shadowing & slight anti-shadowing







Probes sensitive to different x,Q<sup>2</sup> in global fits









## **Constrain nPDF Past Success**

### Quark distribution

- EW bosons & DY in pPb [PLB 2020] [JHEP 2021] [PRL 2021]
  - Significant shadowing & slight anti-shadowing

## **Gluon distribution**

- Top quark in pPb [PRL 2017]
  - Agrees with NNLO pQCD + nPDF calculations
- Dijet in pPb [PRL 2018]
  - Strong evidence for (anti-) shadowing & hint of EMC
  - Significantly reduced uncertainty
  - Included in EPPS21 and nNNPDF3.0





Probes sensitive to different x,Q<sup>2</sup> in global fits







## **Constrain nPDF Past Success**

### Quark distribution

- EW bosons & DY in pPb [PLB 2020] [JHEP 2021] [PRL 2021]
  - Significant shadowing & slight anti-shadowing

### **Gluon distribution**

- Top quark in pPb [PRL 2017]
  - Agrees with NNLO pQCD + nPDF calculations
- Dijet in pPb [PRL 2018]
  - Strong evidence for (anti-) shadowing & hint of EMC
  - Significantly reduced uncertainty
  - Included in EPPS21 and nNNPDF3.0
- Forward jet in pPb [JHEP 2019]
  - -6.6<n<-5.2 constrain saturation models</li>
- Coherent J/ $\psi$  in PbPb UPC New! [arXiv:2303.16984]

### Can we directly see gluon saturation?





Probes sensitive to different x,Q<sup>2</sup> in global fits









arXiv:2303.16984





- Both Pb ions can serve as photon sources
  - Mixed contributions from low (large x) and high (small x) photon energy at specific y









arXiv:2303.16984

CMS

### Jing Wang, CMS Overview, QGP France (Jun 26, 2023)



- First unfolding of contributions from small-x and large-x
  - Vary neutron emission classes
  - Access gluon structure down to  $x \sim 6 \times 10^{-5}$



arXiv:2303.16984

CMS



- Strong nuclear effects
  - Suppression from Impulse approximation
- Flat cross-section for W > 40 GeV \*Recent ALICE result [arXiv] is less flat
  - $\sigma(\gamma p \rightarrow J/\psi p)$  kept increasing to x ~ 10<sup>-5</sup> - Saturation scale  $Q_s^2 \sim A^{1/3}$
  - Gluon saturation?
    - Gluon splitting  $\Rightarrow$  recombination
  - Black disk limit?
    - Geometric limit of scattering probability

### Jing Wang, CMS Overview, QGP France (Jun 26, 2023)

## **Onset of Quark Gluon Plasma**

Under what condition does QGP emerge?



CMS











## **Collectivity Search Large to Small Systems**

### **PbPb**



in PbPb for various flavors

What is the small limit of onset of collectivity?





### High-multiplicity pPb



Almost everything flows in high-multiplicity pPb as well









# **Collectivity Search Large to Small Systems**





### **Possible interpretations of** collectivity in small systems

- Final state effects driven by mini-QGP
- Single or few scatterings (e.g. AMPT, PYTHIA with Rope)
- Initial momentum anisotropy (e.g. CGC)

### Can we separate these origins?





# **Collectivity Origin [p\_]-Cumulant Correlation**

### Mean $p_T-v_2$ correlation



PRL 125 (2020) 192301



- $v_n$ -mean  $p_T$  correlation vs. multiplicity reflects different initial state effects
- Sign-change predicted as signature of initial momentum anisotropy of CGC distinguished from initial geometry anisotropy+final state interactions

Let's see if data says there is initial momentum anisotropy!

# IP-Glasma+MUSIC+UrQMD





CMS

# **Collectivity Origin [p\_]-Cumulant Correlation**



 $N_{ch} (0.5 < p_{\tau} < 5.0 \text{ GeV}, |\eta| < 2.4)$ 



13:35.770304 GMT 347775 / 233









Can we find a small but not dilute system?

Dynamics of a "single-parton" in the vacuum



Search collectivity in single high-multiplicity jets in pp

CMS-PAS-HIN-21-013



























- Features @ small N<sup>j</sup><sub>ch</sub> consistent with short-range few-body correlations captured by PYTHIA8
  - Magnitudes decrease
  - ► Negative odd V<sub>n</sub>∆
- Features @ large N<sup>j</sup><sub>ch</sub> different deviated from PYTHIA8
  - ► V<sub>2∆</sub> increases
  - ► Positive V<sub>3Δ</sub>











CMS-PAS-HIN-22-005



### Theory

- Smaller net charge fluctuation in QGP than hadron gas
- Quantified by

Variance of the net charge scaled by total charge

$$D = 4 \frac{\left\langle \Delta Q^2 \right\rangle}{\left\langle N_{\rm ch} \right\rangle}, \ Q = N_+ - N_-$$



Net charge fluctuations tell which phase they originate from









CMS-PAS-HIN-22-005



### Theory

- Smaller net charge fluctuation in QGP than hadron gas
- Quantified by  $D = 4 \langle \Delta Q^2 \rangle / \langle N_{ch} \rangle$

Variance of the net charge scaled by total charge

### **Experimental observable**

Dynamical net charge fluctuation measure

$$\nu_{+-,\rm dyn} = \left\langle \left( \frac{N_+}{\langle N_+ \rangle} - \frac{N_-}{\langle N_- \rangle} \right)^2 \right\rangle - \nu_{+-,\rm stat} \text{ Poisson stat limit}$$

- Robust observable minimally affected by efficiency
- Depends on  $\eta$  width in which the events are sampled
  - Large  $\Delta\eta$  reduces sensitivity to confounding effects
  - Measurement to  $\Delta \eta = 4.8$  New!

### Jing Wang, CMS Overview, QGP France (Jun 26, 2023)









- Negative values
- Fluctuations decreases with increase of  $\Delta \eta$

Jing Wang, CMS Overview, QGP France (Jun 26, 2023)



Fluctuations decrease to central events

HIJING and HYDJET can not explain data data well











<u>CMS-PAS-HIN-22-005</u>

### Jing Wang, CMS Overview, QGP France (Jun 26, 2023)



### [arXiv:0304012]

### Hadron Gas

Reduced by neutral resonance

Hadron Gas

Qualitatively reduction



- Interpretation of data is tricky Hadronization, resonance, diffusion, rescatterings, ...
- Some complication (e.g. diffusion) is suppressed by the wide η range

### Small $\Delta \eta$ window

- Consistent with previous measurements by ALICE
- Large  $\Delta \eta$  window
- Consistent with prediction of QGP by specific model

1

## Hadronization & Hadron Rescatterings

incakes of nucleons)

er, the earlier)

### How are hadrons produced and interacting?

CMS

Major restriction/uncertainty in phenomenological models





ice I tons of soft scatterings)

Cool down while expansion





Jing Wang, CMS Overview, QGP France (Jun 26, 2023)









## HF Hadronization $\Lambda_c$ in pp and PbPb



Significant enhancement at low p<sub>T</sub> in pp

CMS-PAS-HIN-21-004





•  $\Lambda_c R_{AA}$  minimum point shift to higher p<sub>T</sub> than D<sup>0</sup> possibly because of coalescence







## HF Hadronization $\Lambda_c$ in pPb

 $\Lambda_c/D^0$  vs. multiplicity in pPb



CMS-<u>PAS-HIN-21-016</u>



### Jing Wang, CMS Overview, QGP France (Jun 26, 2023)



## Femtoscopy h<sup>±</sup> - h<sup>±</sup> Correlation

- Use final state particle correlations to probe the particle emitting source
- Parameterization: Lévy-type source & core-halo model
  - Source shape:  $\alpha \rightarrow \text{non-Gaussian}$  behavior
  - Spacial scale: R
  - Core-halo ratio: λ







- Centrality dependence
  - R indeed reflects the spatial scale of system
- Linear scaling  $1/R^2 = Am_T + B$ 
  - Predicted by hydrodynamics for Gaussian source
  - Also holds for Lévy source











## **Femtoscopy Hadron Rescattering**





- $\Lambda \oplus \overline{\Lambda}$ :  $\Re f_0 > 0$ 
  - Indicates attractive interaction
  - Suggests non-existence of bound states of two  $\Lambda$  baryons









## **Femtoscopy Hadron Rescattering**





- $\Lambda \oplus \overline{\Lambda \Lambda}$ :  $\Re f_0 > 0$ 
  - Indicates attractive interaction
  - Suggests non-existence of bound states of two  $\Lambda$  baryons
- $\Lambda K_s^0 \oplus \overline{\Lambda} K_s^0$ : Negative  $\Re f_0 < 0$ 
  - Indicates repulsive interaction









# Get Ready for Run 3



condition improves low p<sub>T</sub> tracking











- nPDF constraints with various probes in (anti) shadowing and EMC regime • Saturation behavior at  $x \sim 10^{-5}$  via coherent J/ $\psi$  production in PbPb UPC

  - Collectivity evidence in single high-multiplicity jets in pp
- Net charge fluctuations decrease as η window increases within mid rapidity

  - Weak multiplicity dependence of  $\Lambda_c/D^0$  in pPb

[Saeahram] [Cristian] [Bharadwaj] [Lida] [Florian]

Jing Wang, CMS Overview, QGP France (Jun 26, 2023)

## Summary

CMS still giving exciting new physics messages 4 years after run 2!

Collectivity observed in PbPb, pPb, pp for light and heavy flavors but not in yp Mean p<sub>T</sub>-v<sub>n</sub> correlation measured to search initial momentum anisotropy by CGC

• D param. consistent with QGP phase predicted by (model dep) lattice in large  $\Delta \eta$ 

Baryon to meson ratio increases vs. multiplicity for light to heavy flavor in pp and AA

Even more are coming before QM...



### Heavy-ion collisions

CMS



Jing Wang, CMS Overview, QGP France (Jun 26, 2023)

## I Asked AI to Imagine...



### Heavy-ion collisions

CMS



### A long way to go to understand quarks and gluons

Jing Wang, CMS Overview, QGP France (Jun 26, 2023)

## I Asked Al to Imagine...

### Quark-gluon plasma





## Isabelle

## Thanks for your attention!

έ.



41.90





Jing Wang, CMS Overview, QGP France (Jun 26, 2023)





# Collectivity Origin Y(1S) vs. $J/\psi$ in pPb



CMS-PAS-HIN-21-001

Jing Wang, CMS Overview, QGP France (Jun 26, 2023)







CMS-PAS-HIN-21-017

Jing Wang, CMS Overview, QGP France (Jun 26, 2023)

# **Collectivity Origin Charge Balance Function in pPb**







# Flavor Dependence of Energy Loss



- Interplay of multiple effects
- (One is) Dead cone effect
  - Radiation is suppressed inside  $\theta < m/E$
  - Energy loss  $\Delta E_l > \Delta E_c > \Delta E_b$



Larger energy loss -> Smaller energy loss

FPJC 78 (201<u>8) 509</u> EPJC 78 (2018) 762

Jing Wang, CMS Overview, QGP France (Jun 26, 2023)







# Feed-Down, Binding Energy





### Jing Wang, CMS Overview, QGP France (Jun 26, 2023)



# Azimuthal Anisotropy in pp and pA







Jing Wang, CMS Overview, QGP France (Jun 26, 2023)

## Heavy-Ion Collisions

## Before collisions (two pancakes of nucleons)

Collisions (the harder, the earlier)

18 C 1

8 1

QGP emergence (tons of soft scatterings) 

**Relativistic heavy-ion collisions** 

Quark Gluon Plasma Mesons

CMS

Yen-Jie Lee, Andre S. Yoon and Wit Busza

Jing Wang, CMS Overview, QGP France (Jun 26, 2023)

Cool down while expansion



# Hadronization





