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Hard probes

Hard probes are produced in hard processes on very short time scales

At ~1/M < 1fm/c

Thus, they are present in the early stages of heavy ion collisions

Two types of hard probes:

¢ "Elementary” HP: direct photons, Z and W bosons, etc.
e "Complex” HP: quarkonia, jets

Elementary hard probes provide information on the "initial state” (e.qg.
npdf): Their yield scales with the number of n-n collisions. They are
weakly affected by the surrounding medium.

Complex hard probes have their own dynamics in the absence of the
QGP. This dynamics can be significantly altered by the presence of the
quark-gluon plasma. Understanding such modifications can yield
information about the QGP properties.
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Open quantum system (1)

The system is "small"
System

00

The environment is "big"
and weakly perturbed by
the presence of the system

QOGP

Environment

The dynamics of the system is obtained after eliminating the degrees of
freedom of the environment. This yields in general a non unitary evolution
(decoherence, dissipation).

The dynamics of the system is affected by the presence of the
environment via simple correlation functions characterising the
environment. The system probes these correlation functions.



Open quantum system (2)

The density matrix of total system D(f) obeys the equation of motion

dD
— = |H, D]
Zdt [7 ]

We need the reduced density matrix of the system:

Do(t) = TrpD(2)

Equation of motion for D, (7)

: r—t
SDo(t) = —i[Hg, Do) + [, dr L(1)Dy(t - 7)

Non hamiltonian contribution

Various strategies:

e Feynman-Vernon Influence functional

e Lindblad equation,

e Schwinger-Keldysh diagrammatic techniques,

e Efc
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Heavy quarks and quarkontia as 'harol probes’

Heavy quarks are produced in pairs in the early stages of URHIC. Their
number remains constant.
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Formation time of a Q0 pair is small —ZMQ
J/¥ M.~ 1.5 Gev At ~ 0.07 fm/c
T M, ~ 4.5 Gev At ~ 0.02 fm/c

Dynamics of heavy quarks is non-relativistic

H:A};—2Q+V(r) (V(”):%‘l‘(}"’)

The potential can be obtained using effective theory (pPNRQCD)
[see N. Brambilla, A.Pineda, J. Soto, A. Vairo, NPB566 (2000) 275]



Heavy quark tnteraction at funite T

Initial suggestion (Matsui-Satz 86): screening of the potential
P’ &
H=—+V() V(r) = rmp(l) 4 o(T)r
MQ I"

This picture predicts a "suppression” of bound states at high
temperature, the most "fragile” ones (bigger, less bound)
disappearing first as the temperature increases ("sequential
suppression™).

Hence the idea of using quarkonia to diagnose the formation
of quark-gluon plasma in URHIC

However, the dynamics of the quarkonia does not reduce to a mere
modification of the potential: non unitary evolution, here caused
by “collisions” with plasma constituents.



Typteal approxtmations tn ORS
(i) weak coupling between HQ and the plasma

Hi = —g [ Agrnt(r)

: HQ density
gauge potential of plasma

n(z) =6(x —Mt* QI - IR 5(x — 7)t*
The presence of the heavy quarks does not modify
significantly the equilibrium state of the plasma.

The influence of the plasma on the heavy quark
dynamics is characterized by simple response
functions (correlators)

A(t1,12) = (Ap(t)Ap(2))7 = Tr | Ap(t)Ap(12) Dy

No assumption of weak or strong coupling needs to
be made concerning the plasma. The correlators can,
in some cases, be obtained from lattice calculations.



(ii) The response of the plasma is "fast”
plasma response is characterized by a single energy scale, the Debye mass

mp =CT (C = 2) n strict weak coupling C = g

mp < M
collisions with plasma constituents involve small energy transfer
sof't gLuov\, exohav\,ges small EnErg Y tra wsfer
2 2
m
qsmp<<M "
M M

the relevant correlator is then generically of the form
Alw =0,1r) = A¥(w =0,r) + iA<(w = 0,1)

V(r)=-A%w=0,7), W(r)=-A%(w=0,7)

Screened potential Imaginary potential
from the point of view of the HQ the interactions with the plasma are
nearly instantaneous ("collisions")

d :
Aty —ty) = / %e—lw“x—fﬂ [A(@=0) + oA (0=0)]

~ §(ty — 1y) Alw = 0) + i%&z‘x — 1)) A (0 =0)
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(iii) semi-classical approximation

M>T

1 1
HQ thermal wavelength A ~ < —
= N

Density matrix becomes nearly diagonal

(rlDolr’) ~0 when |r—1'| > Ay,

Expansion in |[r —I'| —pm Fokker-Planck and Langevin equations



Sewmi-classical expansion for heavy quark motion

e Equation for the density matrix | Langevin equation

e Langevin equation for the relative motion

M . - .
5 T = =750 = VV(r) +£(r,t)

1 ] ] / /
Vi (r) = o7 s (r) (@, né(r, 1)) =n;;(r)o(t - 1)
Non trivial noise

® For an isotropic plasma

ni;(r) = 6i5m(r) n(r) = = (V2W(0) + VW (r))
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e All the ingredients of the dynamics of the HQs are calculated
from the plasma correlation functions



_Jet momentum broadening




Mowmentum broa dewiwg

Consider a high energy quark propagating in the positive z-direction

- -2 [, +

The dynamics reduce to a two-dimensional non-
relativistic problem in the transverse plane with E
playing the role of a mass (x* ¢, p* — E)

P
’Latle

FgA(r,t) | Y(r,t) =0

E>T A A"






VAarLous represewtatiows

Color structure  (¢) = p, + t%p°

Coordinate space representation

(7] ps,0(t) |7) = (b+ /2| ps,o(t) |b— x/2) = ps,o(ba X)

r+7r _
b= 5 r=7"r—rT
Momentum space representation
p(€, K t) = /b e P BT (b, a, ) K= ’“‘;—’“ b=k—k

Wigner representation

P (b, K 1) E/e_iK""‘3 p(b,x,t)

95

The Wigner function has many features of a classical phase
space distribution function.

/b pw (b, K, t) = P(K,1) (momentum distribution)

| B0 = p(o.1) (density)



Equations for the reduced density matrix

Using the same approximations as in the HQ case, one gets

D rpa®)lf) = - (2 _ 2
gtV 1Ps0 ~ T 2E\9r2  or2

) (Flpso®)F) — TsolF —7) (r|os (D))

Ts(x) = CF/ (1—€9%) y(q)

[o(x) = /q (CF + levceiq'w> 7(q)

Strict eikonal approximation

IOS,O(bv L, t) — pé?g (b, w) e ! [so(x)

octet is damped (gluon damping rate)
singlet is not damped at short distance (color transparency)

damping affects non diagonal matrix elements: collisional decoherence



Harmontle approximatiow
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2 2
Iy(z) ~ 4ra’Crnlog (52 ) azl
D

Harmonic approximation yields a Fokker-Planck equation for the Wigner transform

Ko ¢ o
Orpy (b, K, 1) = [———+ -

Eé’b ZaKglpW(baKat)

Note the absence of dissipation in this equation

Equivalent to a simple Langevin equation

d42b 5
E——=§&(t), (&(t1)§;(t2)) = 50i50(t1 — t2)
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Momentum broadening

Initial condition




t =0.05 [fm] t =0.5 [fm]
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7y [fm]

t =100.0 [fm]

1 ' 1
k1 [GeV] ki [GeV]
t =5.0 [fm] t =100.0 [fm]
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SuUummia Vg

® The theory of open quantum systems offers a useful
framework to calculate the interactions of complex hard
probes with their environment.

e It also provides interesting perspectives and reveals
connections between seemingly unrelated problems (examples
discussed in the talk: quarkonia and (simplified) jets).

e It allows to derive many different approaches from a common
starting point.



