

Charm production with LHCb fixed-target

Kara Mattioli

Laboratoire Leprince Ringuet, CNRS

Rencontres QGP France 2023

27 June 2023

Motivation: a complete picture of quarkonia formation and dissociation in nuclear matter

- Quarkonia "melting", or dissociation due to color charge screening, is a predicted signature of QGP formation
- A definitive observation of melting would be achieved by measuring the predicted "sequential suppression mechanism" fully corrected for cold nuclear matter effects

• A comprehensive understanding of CNM effects requires measuring charmonia production in a variety of nuclear systems and kinematic phase space

Fixed target kinematics at the LHC

- Unique access to high Bjorken x and low Q² phase space
 - Probe nuclear anti-shadowing at x ~ 0.02 0.3
 - Complementary phase space to LHC collider experiments
- Variety of nuclear targets
 - Constrain nuclear PDFs
 - Study nuclear absorption (vary path length by varying A)
- Unexplored center of mass energy of $\sqrt{s} = 41 115$ GeV

- LHCb is the only LHC experiment able to operate in a fixed-target mode
 - Access to rapidity in the center-of-mass system -2.29 < y^* < 0

The Large Hadron Collider beauty (LHCb) Experiment: a collider and fixed-target experiment!

The LHCb Detector: Full **tracking, particle identification**, **hadronic and electromagnetic calorimetry** and **muon ID** in $2 < \eta < 5$

- Fixed-target mode in Run 2 possible by injecting gas into the Vertex Locator with a pressure of ~ 10⁻⁷ mbar
- One of the circulating proton or Pb beams was used to produce pA or PbA collisions

The LHCb fixed-target program

• SMOG: System for Measuring Overlap with Gas

- Noble gases (Ar, He, Ne) injected with a pressure of 10⁻⁷ mbar
- Luminosity of ~6 x 10²⁹ cm⁻² s⁻¹
- Several pA and PbA data samples collected:

SMOG Run 2 data samples

Charm measurements with SMOG

System	√ s _{NN}	Measurement	Publication	
p → He	86.6 GeV	• J/ ψ and D^0 total and differential cross sections in y^* and p_T	PRL 122 (2019) 132002	
p → Ne	68.5 GeV	• J/ ψ and ψ (2S) cross sections and	new!	
		• D^0 cross section and asymmetry See talk today by Gabriel Ricart for discussion of D^0 asymmetry results!	arXiv:2211.11645 arXiv:2211.11633	
p Ar	110.4 GeV	• J/ ψ and D^0 differential distributions in y^* and p_T	PRL 122 (2019) 132002	
Pb Ne			new!	
	68.5 GeV	• J/ ψ and D^0 cross section ratio	arXiv:2211.11652	
	first fixed-target AA measurement at the LHC!			

Heavy flavor signal yields in pNe collisions

Event Selection:

- Primary vertex in [-200, -100]mm or [100, 150]mm to avoid residual *pp* collisions
- Heavy flavor hadron $p_T < 8 \; GeV$
- Heavy flavor hadron rapidity in 2.0 < y < 4.29
- For charmonia, two reconstructed muons with $p_{\rm T}$ > 500 MeV
- For D^0 , identified K^- and π^+ tracks with $p_T > 250$ MeV

Do differential cross sections

- FONLL and PHSD predictions fail to reproduce the p_T distribution seen in data
- The Vogt 1% IC and the MS predictions both include 1% intrinsic charm contribution in the proton
- MS includes 10% recombination contributions, Vogt includes shadowing effects

See talk by Gabriel Ricart for D^0 charge asymmetry in pNe!

• PDF and factorisation scale uncertainties are only included in FONLL calculations

 Kara Mattioli (LLR/CNRS)
 LHCb data: arXiv:2211.11633
 Vogt: PRC 103 (2021) 035204
 MS: PLB 835 (2022) 137530

 FONLL: PRL 95 (2005) 122001, JHEP 05 (1998) 007
 PHSD: PRC 96 (2017) 014905

Ne

J/ψ cross section measurement at $\sqrt{s_{NN}} = 68.5 \text{ GeV}$

• The measured J/ψ cross section in the fiducial measurement region of y^* in [-2.29, 0] was extrapolated to the full backward (negative) hemisphere using Pythia 8 and the CT09MCS PDF set:

 $\sigma(\text{pNe} \rightarrow J/\psi \text{ X}) = 1013 \pm 16 \text{ (stat.)} + 83 \text{ (sys.) nb}^{-1}/\text{nucleon}$

• Comparison to cross section measurements from other experiments shows a power law dependence on the center of mass energy:

Ne

J/ψ differential cross sections

- LO CSM, HO: LO Color Singlet Model (CSM) predictions made using the HELAC-Onia generator with CT14NLO and nCTEQ15 PDF sets
- Vogt predictions use the Color Evaporation Model, EPPS16 nPDFs, and include contributions from nuclear absorption and multiple scattering
- The data does not differentiate between predictions with or without an intrinsic charm component included

Ne

Relative production rate of J/ ψ and ψ (2s) mesons

- LHCb measurement: 1.67 ± 0.27 (stat) ± 0.10 (sys) %
- The relative production rate of $\psi(2S)$ to J/ψ mesons in pNe collisions is consistent with the rates measured on other nuclear targets and at other center of mass energies

From pA to PbA collisions

- With **PbNe** collisions, LHCb can begin to probe the energy density region where NA50 observed an anomalous J/ψ suppression
- On average, only 1 $c\overline{c}$ pair is expected to be produced per $\sqrt{s} = 68.5$ GeV PbNe collision

$$- \sigma_{c\overline{c}}^{5.5 \ TeV} \approx 10 \times \sigma_{c\overline{c}}^{200 \ GeV} \approx 100 \times \sigma_{c\overline{c}}^{70 \ GeV} \approx 100 \times \sigma_{c\overline{c}}^{70 \ GeV} \approx 1000 \times \sigma_{c\overline{c}}^{20 \ GeV}$$

- Measurements at RHIC give $N_{c\overline{c}} \approx 13$, giving $N_{c\overline{c}} \approx 1$ at $\sqrt{s} = 68.5$ GeV

- With $N_{c\overline{c}} \approx 1$ on average, no significant effects from recombination are expected in PbA fixed-target collisions

- LHCb can also measure pAr collisions at the same energy to measure the cold nuclear matter effects in Ar
- Can measure charmonium suppression fully controlled for recombination and CNM effects

Heavy flavor signal yields in PbNe collisions

- Larger background than in pA collisions, but clean signal peaks are still observed proof of measurement feasibility in larger PbA systems
- Similar candidate selection as in pNe measurement
- Heavy flavor hadron $p_T < 8 \text{ GeV}$
- Heavy flavor hadron y in 2.0 < y < 4.29

Efficiency-corrected candidate yields: 545 J/ ψ , 5670 D^o

Cross section ratios of J/ψ and D^0 production in PbNe and pNe collisions

- Compare J/ ψ production in large (PbNe) vs small (pNe) nuclear environment at the same \sqrt{s}
- $\sigma_{J/\psi}/\sigma_{Do}$ shows little dependence on y^* and a strong dependence on p_T

Nuclear effects on hidden vs open charm

- Assuming: $\sigma_{D^0}^{AB} = \sigma_{D^0}^{pp} \times AB$ and $\sigma_{J/\psi}^{AB} = \sigma_{J/\psi}^{pp} \times AB^{\alpha}$, the cross section ratio is: $\frac{\sigma_{J/\psi}^{AB}}{\sigma_{D^0}^{AB}} = \frac{\sigma_{J/\psi}^{pp}}{\sigma_{D^0}^{pp}} \times AB^{\alpha-1} = C \times AB^{\alpha-1}$
- Same functional form for the ratio as a function of the number of collisions (N_{coll})
- α < 1: indicates that J/ ψ mesons experience additional nuclear effects than D^o mesons
- Within the current precision, a linear trend is observed between pNe and central PbNe events and no conclusive evidence of anomalous J/ψ suppression or formation of a hot deconfined medium is observed

Kara Mattioli (LLR/CNRS)PbNe: arXiv:2211.11652pNe: arXiv:2211.11645

Run 3 with LHCb SMOG2

- SMOG2 is a dedicated cell for gas injection installed just before the LHCb VELO
- Smaller cell size (20cm long, 1cm diameter) allows for increased gas densities and therefore higher luminosities with respect to SMOG1
- Can run in parallel with collider mode pp physics data taking at LHCb
- Equipped with a sophisticated Gas Feed System to store and inject 8 different gases: H₂, D₂, Ar, Kr, Xe, He, Ne, N₂, O₂

The open SMOG2 cell installed in front of the LHCb VELO

 Large increase in heavy flavor statistics compared to SMOG:
 SMOG SMOG

	DIVIOU	DIVIOG	01/10/02
	published result	largest sample	example
	$p {\rm He} @87~{ m GeV}$	p Ne@69 ~GeV	pAr@115 GeV
Integrated luminosity	$7.6 \ {\rm nb^{-1}}$	$\sim 100~{ m nb}^{-1}$	$\sim 45~{ m pb}^{-1}$
syst. error on J/ψ x-sec.	7%	6 - 7%	2 - 3 %
J/ψ yield	400	15k	15M
D^0 yield	2000	100k	150M
Λ_c^+ yield	20	1k	1.5M
$\psi(2S)$ yield	negl.	150	150k
$\Upsilon(1S)$ yield	negl.	4	7k
Low-mass Drell-Yan yield	negl.	5	9k

SMOC₂

SMOG2 performance in Run 3

- First Run 3 data successfully taken in 2022!
- Commissioning performed with Argon, Helium, and Hydrogen gases
- Successfully reconstructed mass peaks from a 21-minute pH injection!
 - Important milestone for performing R_{AA} measurements with SMOG2

Charm in SMOG2 Run 3 Data

- From **18 minutes of data-taking** during an Ar injection, we obtained 4,200 D^0 and 443 J/ ψ candidates!
- Excellent preliminary yields given that the detector was still in a commissioning phase -"nominal" Run 3 performance is expected to be even better!
- SMOG2 physics trigger chain fully tested and validated on real data

Ar

Outlook for SMOG2 in 2023

- In 2023, the LHCb VELO detector will run in a partially open configuration as a result of the LHC VELO vacuum incident (see backup for details)
- The partially open VELO means that the SMOG2 cell will also be open, which results in a loss of pressure and therefore, statistics for our measurements
- However, we still plan to inject Ar in the SMOG2 cell for 170 hours and take data for physics analysis

"Life (2023 partially-open VELO data) is a desert, but we can transform our corner (SMOG2) into a garden (largest pAr sample we've ever collected?!)." - Voltaire

- Our SMOG2 physics trigger lines have already been updated with loosened cuts to maximise signal with the partially-open VELO conditions
- We also plan to inject during the PbPb run to collect PbAr collision data
- In 2024, we will return to our "normal conditions" with a fully closed VELO, fully closed SMOG2 cell, and a fully commissioned LHCb detector, which will enable our full SMOG2 physics program!

Conclusions

- Fixed target experiments at the LHC provide opportunities to study quarkonia production in a wide variety of nuclear systems and in a unique region of phase space
- New measurements of D^o and charmonium production in pNe and PbNe collisions at $\sqrt{s_{NN}} = 68.5$ GeV have been performed by LHCb
- Within the current experimental precision, comparisons of the J/ ψ and D^o cross sections in PbNe collisions do not show conclusive evidence for the presence of anomalous suppression or the formation of a hot nuclear medium
- Mass peaks of K_s^0 and Λ in pH collisions and of J/ψ and Do in pAr collisions have already been obtained with LHCb Run 3 data from LHCb's fixed target upgrade, SMOG2

• Many more measurements coming soon with SMOG2!

Thank you for your attention!

LHCb VELO Vacuum Incident in January 2023

The VELO detector is installed in a secondary vacuum inside the LHC primary vacuum. The primary and secondary volumes are separated by two thin walled Aluminium boxes, the RF foils

On 10th January 2023, during a VELO warm up in neon, there was a loss of control of the protection system A pressure differential of 200 mbar built up between the two volumes, whereas the foils are designed to withstand 10 mbar only Initial investigations show no damage to the VELO modules; sensors show correct leakage currents, microchannels show no leaks

RF foils have suffered plastic deformation up to 14 mm and have to be replaced. Major intervention, planning under study

- Replace now (delay), or replace at the end of the year (run in 2023 with VELO partially open)
- Physics programme of 2023 is significantly affected, commissioning of Upgrade I systems can proceed as planned

Early measurements possible with SMOG2

• J/ ψ and ψ (2S) production in pAr collisions

- Baseline for measurement in PbAr collisions
- Comparison to pNe measurement to probe CNM effects as a function of system size
- Both quarkonia states are needed for future comparison with a χ_c measurement in pAr to provide a baseline for suppression measurements in PbAr

• J/ ψ and D^o production in PbAr collisions

- QGP expected to be produced
- pAr, PbAr, PbNe measurements can help disentangle hot vs. cold nuclear effects that contribute to quarkonia dissociation

- **Upsilon production in pAr collisions** study CNM effects as a function of bound state size and quark flavor content (e.g. parton energy loss effects)
- Multi-differential $\psi(2S)$ measurements in pAr collisions complement differential J/ ψ measurements and test theoretical models of quarkonium production
- J/ ψ production in pH₂ collisions necessary baseline for J/ ψ R_{AA} measurements

Ar

Other measurements possible with SMOG2

- Possible determination of cc hadronization time
 - Parameterization of nuclear absorption mechanism proposed by E. Ferreiro, E. Maurice, and F. Fleuret
 - Proper time of $c\overline{c}$ pair of mass *m* traversing length L in a nucleus:

$$\tau = \frac{t}{\gamma} = \frac{Lm}{p} = \frac{Lm}{\sqrt{p_z^2 + p_T^2}} = \frac{Lm}{\sqrt{m_T^2 \sinh^2 y + p_T^2}}$$

- More pA data in a variety of nuclear targets needed for hadronization time extraction - possible with SMOG2!

Quarkonia production in additional collision systems

- pD₂, pKr, pXe, pN₂, pO₂ collisions all possible
 PbH₂, PbKr, PbXe...
- Drell-Yan measurements
- Exclusive production (photoproduction) of J/ψ on a variety of nuclear targets

Expected number of $c\overline{c}$ pairs in PbNe collisions

• From previous measurements of inclusive $c\overline{c}$ pair production at different centre of mass energies:

 $\sigma_{c\overline{c}}^{5.5\ TeV} \approx 10 \times \sigma_{c\overline{c}}^{200\ GeV} \approx 100 \times \sigma_{c\overline{c}}^{70\ GeV} \approx 1000 \times \sigma_{c\overline{c}}^{20\ GeV}$

• PHENIX measured the number of electrons from semileptonic charm hadron decays in AuAu collisions at $\sqrt{s} = 200$ GeV. The yield scales with N_{coll} (expected if no nuclear effects on the total $c\overline{c}$ production)

$$N_{c\overline{c}} = \frac{N_{c\overline{c}}}{T_{AA}} \times T_{AA} = (597x10^{-3}) \text{ mb} \times 22.8 \text{ mb}^{-1} \approx 13$$

TABLE I. Centrality bin, number of NN collisions, nuclear overlap function, charm cross section per NN collision, and total charm multiplicity per NN collision, in $\sqrt{s_{NN}} = 200 \text{ GeV Au} + \text{Au}$ reactions.

Centrality (%)	N _{coll}	$T_{AA} \text{ (mb}^{-1}\text{)}$	$\frac{1}{T_{AA}} \frac{dN_{c\bar{c}}}{dy} \big _{y=0} \ (\mu b)$	$N_{c\overline{c}}/T_{AA}$ (µb)
Minimum bias	258 ± 25	6.14 ± 0.45	$143 \pm 13 \pm 36$	$622 \pm 57 \pm 160$
0-10	955 ± 94	22.8 ± 1.6	$137 \pm 21 \pm 35$	$597 \pm 93 \pm 156$
10-20	603 ± 59	14.4 ± 1.0	$137 \pm 26 \pm 35$	596 ± 115 ± 158
20-40	297 ± 31	7.07 ± 0.58	$168 \pm 27 \pm 45$	731 ± 117 ± 199
40-60	91 ± 12	2.16 ± 0.26	$193 \pm 47 \pm 52$	$841 \pm 205 \pm 232$
60-92	14.5 ± 4.0	0.35 ± 0.10	$116 \pm 87 \pm 43$	504 ± 378 ± 190

Kara Mattioli (LLR/CNRS) $\sigma_{c\bar{c}}$: <u>PRC 94 (2016) 054908</u> PHENIX results: <u>PRL 94, 082301 (2005)</u>

Projected luminosities for different SMOG2 gas species in Run 3

System	$\sqrt{s_{_{ m NN}}}$	< pressure>	$ ho_S$	${\cal L}$	Rate	Time	$\int \mathcal{L}$
	(GeV)	(10^{-5} mbar)	(cm^{-2})	$({ m cm}^{-2}{ m s}^{-1})$	(MHz)	(s)	(pb^{-1})
pH_2	115	4.0	$2.0 imes 10^{13}$	$6 imes 10^{31}$	4.6	$2.5 imes 10^6$	150
$p\mathrm{D}_2$	115	2.0	$1.0 imes 10^{13}$	3×10^{31}	4.3	$0.3 imes10^6$	9
$p \mathrm{Ar}$	115	1.2	$0.6 imes10^{13}$	$1.8 imes 10^{31}$	11	$2.5 imes10^6$	45
$p{ m Kr}$	115	0.8	$0.4 imes 10^{13}$	$1.2 imes 10^{31}$	12	$2.5 imes 10^6$	30
$p \mathrm{Xe}$	115	0.6	$0.3 imes 10^{13}$	$0.9 imes 10^{31}$	12	$2.5 imes 10^6$	22
$p \mathrm{He}$	115	2.0	$1.0 imes 10^{13}$	$3 imes 10^{31}$	3.5	$3.3 imes 10^3$	0.1
$p \mathrm{Ne}$	115	2.0	$1.0 imes 10^{13}$	3×10^{31}	12	$3.3 imes 10^3$	0.1
pN_2	115	1.0	$0.5 imes 10^{13}$	$1.5 imes 10^{31}$	9.0	$3.3 imes 10^3$	0.1
pO_2	115	1.0	$0.5 imes 10^{13}$	$1.5 imes 10^{31}$	10	$3.3 imes 10^3$	0.1
						_	
PbAr	72	8.0	4.0×10^{13}	1×10^{29}	0.3	$6 imes 10^5$	0.060
PbH_2	72	8.0	$4.0 imes 10^{13}$	1×10^{29}	0.2	$1 imes 10^5$	0.010
$p \mathrm{Ar}$	72	1.2	$0.6 imes 10^{13}$	$1.8 imes 10^{31}$	11	$3 imes 10^5$	5

Kara Mattioli (LLR/CNRS) <u>LHCb-PUB-2018-015</u>

Anomalous J/ ψ suppression observed by NA50

Kara Mattioli (LLR/CNRS) EPJC 39, (2005) 335-345

Centrality at LHCb

Centrality classes for PbNe collisions

Kara Mattioli (LLR/CNRS) JINST 17 (2022) P05009