Open charm asymmetries in pNe with LHCb

Gabriel Ricart

irfu

Why open charm in pNe?

Test of charm fragmentation fractions universality

First measurement of J/¥ over full open charm hadrons

Charmonium production in pNe collisions at √s_{NN} = 68.5 GeV LHCb collaboration arXiv:2211.11645 [hep-ex]

Charm-quark fragmentation fractions and production cross section at midrapidity in pp collisions at the LHC ALICE collaboration arXiv: 2105.06335

LHCb detector

LHCb Tracker Upgrade Technical Design Report LHCb Collaboration CERN-LHCC-2014-001

LHCb Tracker Upgrade Technical Design Report LHCb Collaboration CERN-LHCC-2014-001

 $\sqrt{s_{NN}} = 69 \text{ GeV}$

- LHCb forward acceptance becomes backward (-2.3 < y* < 0) with fixed-target configuration.
- Allows to probe large Bjorken-x values of the target nucleon using charm.

LHCb Tracker Upgrade Technical Design Report LHCb Collaboration CERN-LHCC-2014-001

Charm production at fixed-target LHCb

- Backward D-meson production models are still not completely understood.
- Fixed-target LHCb allows to directly probe this kinematic region.
- Leading contribution from "standard" QCD gluon-gluon fusion process.

Recombination mechanism for Do-meson production and Do-Do production asymmetry in the LHCb p+²⁰Ne fixed-target experiment Rafał Maciuła and Antoni Szczurek arXiv:2206.02750 [hep-ph]

Charm production at fixed-target LHCb

- Knock-off of a charm quark from the target nucleon.
- Expected to enhance the D-meson cross-section at backward rapidity.
- However effect remains small, at the percent level.

Charm production at fixed-target LHCb

Recombination mechanism for Do-meson production and Do-Do production asymmetry in the LHCb p+²⁰Ne fixed-target experiment Rafał Maciuła and Antoni Szczurek arXiv:2206.02750 [hep-ph]

- Charge production asymmetry expected when a charm quark recombines with a light quark of the target nucleon.
- As valence region of the target nucleon is dominated by u and d quarks, expect a negative asymmetry increasing at backward rapidity.

$$A = rac{N(car{q}) - N(ar{c}q)}{N(car{q}) + N(ar{c}q)}$$

D^o production asymmetry

Open charm production and asymmetry in pNe collisions at $\sqrt{s_{NN}}$ = 68.5 GeV LHCb collaboration arXiv:2211.11633 [hep-ex]

- PYTHIA 8 predicts a flat negative asymmetry, but still compatible with data.
- Predictions including shadowing effects with (Vogt 1% IC) or without (Vogt no IC) intrinsic charm represents upper bands, with trends compatible with data.
- MS model including both 1% intrinsic charm and 10% recombination contributions best reproduce data points.

charged open charm analysis

QGP France 2023

 $D^+
ightarrow K^- \pi^+ \pi^+$

 $D^+_s
ightarrow K^+ K^- \pi^+$

 $D^{*+}
ightarrow \left(D^0
ightarrow K^- \pi^+
ight) \pi^+$

 $\Lambda_c^+ o p K^- \pi^+$

and charge conjugates

Signal extraction optimization cuts

LHCb THCp

• Main philosophy : As all the final state particles are the same, apply the same cuts to every decay.

Data quality cuts

 $PVz \in [-200; -100] \cup [+100; +150] mm$

 $nPV \ge 1$, PUHits < 5, BCType = 1

	Daughter cuts	
	Acceptance	PID
K±	2 < η < 4.5	PID _K > 5
π^{\pm}	$p_{\rm T} > 400 \text{MeV}$ p > 3 GeV	PID _K < 0

D[±] signal yield

 $D^+
ightarrow K^- \pi^+ \pi^+$

- Signal : Double-sided Crystal-Ball
- Background : Constant
- Limited to $p_T > 1.5$ GeV due to harsh trigger line cuts.

D^{*±} signal yield

$D^{*+} ightarrow \left(D^0 ightarrow K^- \pi^+ ight) \pi^+$

- Signal : Double-sided Crystal-Ball
- Background : 3rd power polynomial
- Subtracting the reconstructed D^o mass allows to minimize the resolution degradation due to the soft pion.
- Down to $p_T = 0$.

D_s[±] signal yield

 $D^+_s
ightarrow K^+ K^- \pi^+$

- Signal : Double-sided Crystal-Ball
- Background : 1st degree polynomial
- Limited to p_T > 1.5 GeV due to harsh trigger line cuts.

D[±] raw asymmetry

$$A = rac{N(D^+) - N(D^-)}{N(D^+) + N(D^-)}$$

- Negative asymmetry increasing at backward rapidity.
- Compatible trend with D^o asymmetry and recombination model predictions.
- However, more data is needed to confirm this trend.
- New SMOG2 cell for high luminosity.

D^{*}[±] raw asymmetry

$$A = rac{N(D^{*+}) - N(D^{*-})}{N(D^{*+}) + N(D^{*-})}$$

- Negative asymmetry mostly flat with rapidity.
- More statistics needed to observe any trend.
- New SMOG2 cell for high luminosity.

$$A = rac{N(D_{s}^{+}) - N(D_{s}^{-})}{N(D_{s}^{+}) + N(D_{s}^{-})}$$

- No hint of asymmetry, as expected.
- Indeed, no strange quark expected in the target nucleon valence region.

Summary Thank you

for your attention

- Unique fixed-target LHCb program allows to probe backward rapidity, high-x charm production mechanisms.
- Hints of charge asymmetry are observed in D-meson production.
- Predictions including recombination best describe D^o data, while other models seem to fail.
- Ongoing analysis to measure asymmetry in charged open-charm hadrons.
- More statistics is needed to confirm trends.
- Paving the way for SMOG2.

SMOG2

First LHCb upgrade reconstruction results on fixed-target data LHCb Collaboration LHCB-FIGURE-2023-001

D^o cross-section measurements

LHCb collaboration

arXiv:2211.11633 [hep-ex]

D^o production asymmetry

Open charm production and asymmetry in pNe collisions at $\sqrt{s_{NN}} = 68.5$ GeV LHCb collaboration arXiv:2211.11633 [hep-ex]