## Moment equations for chiral particles beyond equilibrium

#### Nora Weickgenannt in collaboration with Jean-Paul Blaizot

IPhT, University Paris Saclay

Rencontres QGP France | June 28, 2023

## Chiral effects in relativistic heavy-ion collisions

- ▶ Imbalance between left- and right-handed particles ⇒ axial-vector current
- Currents induced by vorticity
  (axial-) chiral vortical effect
  A. Vilenkin, Phys. Rev. D 20, 1807 (1979)
  D. T. Son and P. Surowka, Phys. Rev. Lett. 103, 191601 (2009)
- Currents induced by electromagnetic fields
  ⇒ chiral magnetic effect/ chiral separation effect
  - D. E. Kharzeev, L. D. McLerran, and H. J. Warringa, Nucl. Phys. A803, 227 (2008)



- Both are equilibrium effects
- Nonequilibrium contributions to chiral currents?

Currents in chiral hydrodynamics: charge current J<sup>μ</sup><sub>V</sub>, axial-charge current J<sup>μ</sup><sub>A</sub>, energy-momentum tensor T<sup>μν</sup>

Conservation laws

$$\partial_{\mu}J_{V}^{\mu} = 0 , \qquad \qquad \partial_{\mu}J_{A}^{\mu} = 0 , \qquad \qquad \partial_{\mu}T^{\mu\nu} = 0$$

Out of equilibrium: system of equations of motion not closed

▶ How to describe out-of-equilibrium dynamics of chiral currents?

- Hydrodynamic-type equations of motion
  - $\rightarrow$  can be derived also independently of gradient expansion
  - $\rightarrow$  good description of underlying microscopic theory even far from local equilibrium

→ attractor solution M. P. Heller, M. Spalinski, PRL 115 (2015) 7, 072501

- Attractor related to existence of fixed points
- Generalize for chiral currents?

### Chiral kinetic theory for Bjorken symmetry

- Kinetic theory: physics contained in distribution function  $f^{\lambda}(x, \mathbf{p})$ two chiralities  $\lambda = \pm 1$
- Boost invariance: can consider only z = 0-slice
- For Translational invariance in transverse plane: f independent of x and y
- ▶ Parity breaking in transverse plane:  $f(p_x) \neq f(-p_x)$ New compared to previous works
- Boltzmann equation describes dynamics of distribution function

$$\left(\partial_{\tau} - \frac{p_z}{\tau} \partial_{p_z}\right) f^{\lambda}(\tau, \mathbf{p}) = -\frac{1}{\tau_R} \left[ f^{\lambda}(\tau, \mathbf{p}) - f^{\lambda}_{\mathsf{eq}}(\tau, \mathbf{p}) \right]$$

au proper time

relaxation time approximation

Express currents through chiral moments

$$\begin{split} J_A^0 &= \sum_{\lambda = \pm 1} \lambda \mathcal{J}_{00}^{\lambda} , \qquad \qquad J_A^x = \sum_{\lambda = \pm 1} \lambda \text{Re} \mathcal{J}_{11}^{\lambda} = J_A^y , \\ J_V^0 &= \sum_{\lambda = \pm 1} \mathcal{J}_{00}^{\lambda} , \qquad \qquad J_V^x = \sum_{\lambda = \pm 1} \text{Re} \mathcal{J}_{11}^{\lambda} = J_V^y , \end{split}$$

$$\mathcal{J}_{n\ell}^{\lambda} \equiv \int d^3 p \, Y_n^{\ell}(\theta,\phi) f^{\lambda}$$

#### spherical harmonics,

needed because f depends on both polar momentum angle  $\theta$  and azimuthal momentum angle  $\phi \to$  parity breaking

#### Analogously for energy-momentum tensor

▶ Derive equations of motion for chiral moments from Boltzmann equation

$$\partial_{\tau}\mathcal{J}^{\lambda}_{n\ell} = -\frac{1}{\tau}\left(a_{n\ell}\mathcal{J}^{\lambda}_{n\ell} + b_{n\ell}\mathcal{J}^{\lambda}_{(n-2)\ell} + c_{n\ell}\mathcal{J}^{\lambda}_{(n+2)\ell}\right) - \frac{\mathcal{J}^{\lambda}_{n\ell} - \mathcal{J}^{\lambda}_{n\ell,\text{eq}}}{\tau_{R}} \ ,$$

transport coefficients

• For (axial) charge density,  $n = 0 = \ell$ 

$$\partial_{\tau}\mathcal{J}_{00}^{\lambda} = -\frac{1}{\tau}\mathcal{J}_{00}^{\lambda}$$

ideal equation of motion

▶ For (axial) charge current in transverse plane,  $n = 1 = \ell$ 

$$\partial_{\tau} \mathcal{J}_{11}^{\lambda} = -\frac{1}{\tau} \left( a_{11} \mathcal{J}_{11}^{\lambda} + c_{11} \mathcal{J}_{31}^{\lambda} \right) - \frac{\mathcal{J}_{11}^{\lambda}}{\tau_R} ,$$

not known

Two limits of equation of motion

$$\partial_{\tau} \mathcal{J}_{11}^{\lambda} = -\frac{1}{\tau} \left( a_{11} \mathcal{J}_{11}^{\lambda} + c_{11} \mathcal{J}_{31}^{\lambda} \right) - \frac{\mathcal{J}_{11}^{\lambda}}{\tau_R}$$

free streaming:  $\tau \ll \tau_R$ 

collision dominated:  $\tau \gg \tau_R$ 

• Late time: collisions  $\implies$  exponential decay

$$\mathcal{J}_{11}^{\lambda} \sim e^{-\tau/\tau_R}$$

Early time: free streaming

$$\partial_{\tau} \mathcal{J}_{11}^{\lambda} = -\frac{1}{\tau} \left( a_{11} \mathcal{J}_{11}^{\lambda} + c_{11} \mathcal{J}_{31}^{\lambda} \right)$$

# Can we ignore $\mathcal{J}_{31}^{\lambda}$ ?

- First attempt: set  $\mathcal{J}_{31}^{\lambda} = 0$
- Free-streaming solution for  $\mathcal{J}_{11}^{\lambda}$ , setting  $\mathcal{J}_{(n+2)1}^{\lambda} = 0$



Relation between coefficients

$$a_{n\ell}\mathcal{P}_{n}^{\ell}(0) + b_{n\ell}\mathcal{P}_{n-2}^{\ell}(0) + c_{n\ell}\mathcal{P}_{n+2}^{\ell}(0) = \mathcal{P}_{n}^{\ell}(0)$$

 $\mathcal{P}_n^\ell(x)$  associated Legendre polynomials

Solution for equations of motion:

$$\mathcal{J}_{n1}^{\lambda} = [\mathcal{P}_{n}^{1}(0)/\mathcal{P}_{1}^{1}(0)]\mathcal{J}_{11}^{\lambda}(0)$$

Stable free-streaming fixed point

 $\Longrightarrow$  solutions with any initial conditions will approach this solution at long time for free streaming

## Fixed points for naive truncation

Truncation shifts fixed point

Convergence to true fixed point very slow



 $\mathcal{J}_{31}^{\lambda}/\mathcal{J}_{11}^{\lambda}$ , setting  $\mathcal{J}_{1(n+2)}^{\lambda} = 0$ , initial condition  $\mathcal{J}_{31}^{\lambda} = [\mathcal{P}_{3}^{1}(0)/\mathcal{P}_{1}^{1}(0)]\mathcal{J}_{11}^{\lambda} = -1.5\mathcal{J}_{11}^{\lambda}$ 

Consequence: Attractor solution shifted



 $\mathcal{J}_{31}^{\lambda}/\mathcal{J}_{11}^{\lambda}$ , setting  $\mathcal{J}_{1(19)}^{\lambda} = 0$ , different initial conditions

- Attractor: initial condition at true fixed point
- Different initial conditions: damped oscillation around attractor
- But attractor solution should be constant

### Fixed-point truncation

• Idea: Approximate  $\mathcal{J}_{1(n+2)}^{\lambda} \simeq [\mathcal{P}_{n+2}^1(0)/\mathcal{P}_1^1(0)]\mathcal{J}_{11}^{\lambda}$ 

Enforces correct behavior of attractor solution



 $\mathcal{J}_{31}^{\lambda}/\mathcal{J}_{11}^{\lambda}$ , setting  $\mathcal{J}_{1(19)}^{\lambda} = [\mathcal{P}_{19}^1(0)/\mathcal{P}_{1}^1(0)]\mathcal{J}_{11}^{\lambda}$ , different initial conditions

Fixed-point truncation: very good agreement with exact solution even at lowest order



Free-streaming solution for  $\mathcal{J}_{11}^{\lambda}$ , setting  $\mathcal{J}_{1(n+2)}^{\lambda} = [\mathcal{P}_{n+2}^1(0)/\mathcal{P}_1^1(0)]\mathcal{J}_{11}^{\lambda}$ 

## Full equations of motion

- So far: free streaming
- Reminder: late-time dynamics governed by exponential decay

 $\Longrightarrow$  Fixing free-streaming fixed point sufficient to describe system during full evolution

$$\partial_{\tau} \mathcal{J}_{11}^{\lambda} = -\frac{1}{\tau} \left( a_{11} \mathcal{J}_{11}^{\lambda} + c_{11} \mathcal{J}_{31}^{\lambda} \right) - \frac{\mathcal{J}_{11}^{\lambda}}{\tau_R}$$

### Full equations of motion

- So far: free streaming
- Reminder: late-time dynamics governed by exponential decay

 $\Longrightarrow$  Fixing free-streaming fixed point sufficient to describe system during full evolution

$$\partial_{\tau} \mathcal{J}_{11}^{\lambda} = -\frac{1}{\tau} \left( a_{11} - 1.5 c_{11} \right) \mathcal{J}_{11}^{\lambda} - \frac{\mathcal{J}_{11}^{\lambda}}{\tau_R}$$



#### Energy-momentum tensor I

- Similar procedure for components of energy-momentum tensor
- Also here: excellent agreement with exact solution



lowest-order truncation vs. exact solution for  $T^{xy}$ 

#### Energy-momentum tensor II

▶ Also here: excellent agreement with exact solution



lowest-order truncation vs. exact solution for  $T^{xz}$ 

T<sup>xz</sup> decays even faster than other components

- Compare to 14-moment approximation (Israel-Stewart)
- Consider lowest order truncation

#### 14-moment approximation

basis

idea

effect

neglect  $\mathcal{O}(p_z/E_p)$  $p_z/E_p \to 0$  fixed-point truncation

 $\begin{aligned} \mathcal{P}_n^\ell(p_z/p) \\ \text{approximate } \mathcal{P}_n^\ell(p_z/E_p) &\to \mathcal{P}_n^\ell(0) \\ p_z/E_p &\to 0 \end{aligned}$ 

⇒ Our results are identical to 14-moment approximation for all moments which vanish in equilibrium

1,  $p_z/p$ ,  $(p_z/p)^2$ , ...

 $\implies$  Bjorken expansion  $\rightarrow$  distribution function peaked around  $p_z = 0$ By chance, 14-moment approximation is consistent with this property

- All currents are well described by lowest-order fixed-point truncation at any time of evolution
- Parity-violating moments decay exponentially at late time
  ⇒ contributions from initial conditions have disappeared at freeze out
  ⇒ measurement of spatial chiral currents signature for vorticity or magnetic field
- Charge and axial-charge densities follow ideal equations of motion at any time of evolution

 $\implies$  local-equilibrium description sufficient to describe full dynamics

► Here: translational invariance ⇒ no vorticity

Future: include vorticity  $\implies$  equilibrium contributions to parity-violating moments

Here: massless particles, chiral degrees of freedom

Future: massive particles, spin