Moment equations for chiral particles beyond equilibrium

Nora Weickgenannt in collaboration with Jean-Paul Blaizot

IPhT, University Paris Saclay

Rencontres QGP France | June 28, 2023

Chiral effects in relativistic heavy-ion collisions

- ▶ Imbalance between left- and right-handed particles \implies axial-vector current
- \blacktriangleright Currents induced by vorticity _{⇒→} (axial-) chiral vortical effect A. Vilenkin, Phys. Rev. D 20, 1807 (1979) D. T. Son and P. Surowka, Phys. Rev. Lett. 103, 191601 (2009)
- ▶ Currents induced by electromagnetic fields \implies chiral magnetic effect/ chiral separation effect D. E. Kharzeev, L. D. McLerran, and H. J. Warringa, Nucl. Phys. A803, 227 (2008)

- Both are equilibrium effects
- Nonequilibrium contributions to chiral currents?
- \blacktriangleright Currents in chiral hydrodynamics: charge current J^{μ}_{V} , axial-charge current J^{μ}_{A} , energy-momentum tensor $T^{\mu\nu}$
- ▶ Conservation laws

$$
\partial_\mu J^\mu_V = 0 \; , \qquad \qquad \partial_\mu J^\mu_A = 0 \; , \qquad \qquad \partial_\mu T^{\mu\nu} = 0
$$

▶ Out of equilibrium: system of equations of motion not closed

▶ How to describe out-of-equilibrium dynamics of chiral currents?

- ▶ Hydrodynamic-type equations of motion
	- \rightarrow can be derived also independently of gradient expansion
	- \rightarrow good description of underlying microscopic theory even far from local equilibrium

</u> attractor solution M. P. Heller, M. Spalinski, PRL 115 (2015) 7, 072501

- \blacktriangleright Attractor related to existence of fixed points
- ▶ Modification of coefficients in hydrodynamic equations of motion \implies excellent description of system at any time of evolution J.-P. Blaizot, L. Yan, AP 412 (2020) 167993, PLB 820 (2021) 136478, PRC 104 (2021) 5, 055201
- \triangleright Generalize for chiral currents?

Chiral kinetic theory for Bjorken symmetry

- \blacktriangleright Kinetic theory: physics contained in distribution function $f^{\lambda}(x, \mathbf{p})$ two chiralities $\lambda = +1$
- \triangleright Boost invariance: can consider only $z = 0$ -slice
- \blacktriangleright Translational invariance in transverse plane: f independent of x and y
- ▶ Parity breaking in transverse plane: $f(p_x) \neq f(-p_x)$ New compared to previous works
- \triangleright Boltzmann equation describes dynamics of distribution function

$$
\left(\partial_{\tau} - \frac{p_z}{\tau} \partial_{p_z}\right) f^{\lambda}(\tau, \mathbf{p}) = -\frac{1}{\tau_R} \left[f^{\lambda}(\tau, \mathbf{p}) - f^{\lambda}_{\text{eq}}(\tau, \mathbf{p}) \right]
$$

 τ proper time relaxation time approximation

 \blacktriangleright Express currents through chiral moments

$$
J_A^0 = \sum_{\lambda = \pm 1} \lambda \mathcal{J}_{00}^{\lambda} ,
$$

\n
$$
J_A^x = \sum_{\lambda = \pm 1} \lambda \text{Re} \mathcal{J}_{11}^{\lambda} = J_A^y ,
$$

\n
$$
J_V^0 = \sum_{\lambda = \pm 1} \mathcal{J}_{00}^{\lambda} ,
$$

\n
$$
J_V^x = \sum_{\lambda = \pm 1} \text{Re} \mathcal{J}_{11}^{\lambda} = J_V^y ,
$$

$$
\mathcal{J}_{n\ell}^{\lambda} \equiv \int d^3p \, Y_n^{\ell}(\theta,\phi) f^{\lambda}
$$

spherical harmonics,

needed because f depends on both polar momentum angle θ and azimuthal momentum angle $\phi \rightarrow$ parity breaking

▶ Analogously for energy-momentum tensor

▶ Derive equations of motion for chiral moments from Boltzmann equation

$$
\partial_{\tau} \mathcal{J}_{n\ell}^{\lambda} = -\frac{1}{\tau} \left(a_{n\ell} \mathcal{J}_{n\ell}^{\lambda} + b_{n\ell} \mathcal{J}_{(n-2)\ell}^{\lambda} + c_{n\ell} \mathcal{J}_{(n+2)\ell}^{\lambda} \right) - \frac{\mathcal{J}_{n\ell}^{\lambda} - \mathcal{J}_{n\ell, \text{eq}}^{\lambda}}{\tau_R} ,
$$

transport coefficients

▶ For (axial) charge density, $n = 0 = \ell$

$$
\partial_\tau \mathcal{J}^\lambda_{00} = -\frac{1}{\tau} \mathcal{J}^\lambda_{00}
$$

ideal equation of motion

▶ For (axial) charge current in transverse plane, $n = 1 = \ell$

$$
\partial_{\tau} \mathcal{J}_{11}^{\lambda} = -\frac{1}{\tau} \left(a_{11} \mathcal{J}_{11}^{\lambda} + c_{11} \mathcal{J}_{31}^{\lambda} \right) - \frac{\mathcal{J}_{11}^{\lambda}}{\tau_R} ,
$$

not known

 \blacktriangleright Two limits of equation of motion

$$
\partial_{\tau} \mathcal{J}_{11}^{\lambda} = -\frac{1}{\tau} \left(a_{11} \mathcal{J}_{11}^{\lambda} + c_{11} \mathcal{J}_{31}^{\lambda} \right) - \frac{\mathcal{J}_{11}^{\lambda}}{\tau_R}
$$

free streaming: $\tau \ll \tau_R$ collision dominated: $\tau \gg \tau_R$

▶ Late time: collisions \implies exponential decay

$$
\mathcal{J}_{11}^{\lambda} \sim e^{-\tau/\tau_R}
$$

 \blacktriangleright Early time: free streaming

$$
\partial_{\tau}\mathcal{J}_{11}^{\lambda} = -\frac{1}{\tau} \left(a_{11} \mathcal{J}_{11}^{\lambda} + c_{11} \mathcal{J}_{31}^{\lambda} \right)
$$

Can we ignore $\mathcal{J}_{31}^{\lambda}$?

- ▶ First attempt: set $\mathcal{J}_{31}^{\lambda} = 0$
- \blacktriangleright Free-streaming solution for $\mathcal{J}^{\lambda}_{11}$, setting $\mathcal{J}^{\lambda}_{(n+2)1}=0$

▶ This does not look so great ⇒ Can we do better?

 \blacktriangleright Relation between coefficients

$$
a_{n\ell} \mathcal{P}_n^{\ell}(0) + b_{n\ell} \mathcal{P}_{n-2}^{\ell}(0) + c_{n\ell} \mathcal{P}_{n+2}^{\ell}(0) = \mathcal{P}_n^{\ell}(0)
$$

 $\mathcal{P}_n^\ell(x)$ associated Legendre polynomials

▶ Solution for equations of motion:

$$
\mathcal{J}_{n1}^{\lambda} = [\mathcal{P}_n^1(0)/\mathcal{P}_1^1(0)]\mathcal{J}_{11}^{\lambda}(0)
$$

Stable free-streaming fixed point

 \implies solutions with any initial conditions will approach this solution at long time for free streaming

Fixed points for naive truncation

▶ Truncation shifts fixed point

▶ Convergence to true fixed point very slow

 $\mathcal{J}_{31}^\lambda/\mathcal{J}_{11}^\lambda$, setting $\mathcal{J}_{1(n+2)}^\lambda=0$, initial condition $\mathcal{J}_{31}^\lambda=[\mathcal{P}_3^1(0)/\mathcal{P}_1^1(0)]\mathcal{J}_{11}^\lambda=-1.5\mathcal{J}_{11}^\lambda$

Consequence: Attractor solution shifted

 $\mathcal{J}_{31}^{\lambda}/\mathcal{J}_{11}^{\lambda}$, setting $\mathcal{J}_{1(19)}^{\lambda}=0$, different initial conditions

- ▶ Attractor: initial condition at true fixed point
- ▶ Different initial conditions: damped oscillation around attractor
- But attractor solution should be constant

Fixed-point truncation

▶ Idea: Approximate $\mathcal{J}_{1(n+2)}^{\lambda} \simeq [\mathcal{P}_{n+2}^1(0)/\mathcal{P}_1^1(0)] \mathcal{J}_{11}^{\lambda}$

Enforces correct behavior of attractor solution

 $\mathcal{J}_{31}^\lambda/\mathcal{J}_{11}^\lambda$, setting $\mathcal{J}_{1(19)}^\lambda=[\mathcal{P}_{19}^1(0)/\mathcal{P}_{1}^1(0)]\mathcal{J}_{11}^\lambda$, different initial conditions

▶ Fixed-point truncation: very good agreement with exact solution even at lowest order

Free-streaming solution for $\mathcal{J}_{11}^{\lambda}$, setting $\mathcal{J}_{1(n+2)}^{\lambda}=[\mathcal{P}_{n+2}^1(0)/\mathcal{P}_1^1(0)]\mathcal{J}_{11}^{\lambda}$

Full equations of motion

- ▶ So far: free streaming
- ▶ Reminder: late-time dynamics governed by exponential decay

 \implies Fixing free-streaming fixed point sufficient to describe system during full evolution

$$
\partial_{\tau} \mathcal{J}_{11}^{\lambda} = -\frac{1}{\tau} \left(a_{11} \mathcal{J}_{11}^{\lambda} + c_{11} \mathcal{J}_{31}^{\lambda} \right) - \frac{\mathcal{J}_{11}^{\lambda}}{\tau_R}
$$

Full equations of motion

- ▶ So far: free streaming
- ▶ Reminder: late-time dynamics governed by exponential decay

 \implies Fixing free-streaming fixed point sufficient to describe system during full evolution λ

$$
\partial_{\tau} \mathcal{J}_{11}^{\lambda} = -\frac{1}{\tau} \left(a_{11} - 1.5 c_{11} \right) \mathcal{J}_{11}^{\lambda} - \frac{\mathcal{J}_{11}^{\lambda}}{\tau_R}
$$

Energy-momentum tensor I

- ▶ Similar procedure for components of energy-momentum tensor
- ▶ Also here: excellent agreement with exact solution

lowest-order truncation vs. exact solution for T^{xy}

Energy-momentum tensor II

 \blacktriangleright Also here: excellent agreement with exact solution

lowest-order truncation vs. exact solution for T^{xz}

 \blacktriangleright T^{xz} decays even faster than other components

- ▶ Compare to 14-moment approximation (Israel-Stewart)
- ▶ Consider lowest order truncation

14-moment approximation fixed-point truncation

basis $1, p_z/p, (p_z/p)^2, ...$ \mathcal{P} idea neglect $\mathcal{O}(p_z/E_n)$

effect $p_z/E_n \to 0$ $p_z/E_n \to 0$

 $p^\ell_n(p_z/p)$ $p_n^{\ell}(p_z/E_p) \rightarrow \mathcal{P}_n^{\ell}(0)$

- \implies Our results are identical to 14-moment approximation for all moments which vanish in equilibrium
- \implies Bjorken expansion \rightarrow distribution function peaked around $p_z = 0$ By chance, 14-moment approximation is consistent with this property
- ▶ All currents are well described by lowest-order fixed-point truncation at any time of evolution
- ▶ Parity-violating moments decay exponentially at late time \implies contributions from initial conditions have disappeared at freeze out \implies measurement of spatial chiral currents signature for vorticity or magnetic field
- \triangleright Charge and axial-charge densities follow ideal equations of motion at any time of evolution \implies local-equilibrium description sufficient to describe full dynamics
	-
- ▶ Here: translational invariance \implies no vorticity

Future: include vorticity \implies equilibrium contributions to parity-violating moments

▶ Here: massless particles, chiral degrees of freedom

Future: massive particles, spin