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Chiral effects in relativistic heavy-ion collisions

▶ Imbalance between left- and right-handed particles =⇒ axial-vector current

▶ Currents induced by vorticity
=⇒ (axial-) chiral vortical effect
A. Vilenkin, Phys. Rev. D 20, 1807 (1979)
D. T. Son and P. Surowka, Phys. Rev. Lett. 103, 191601 (2009)

▶ Currents induced by electromagnetic fields
=⇒ chiral magnetic effect/ chiral separation effect
D. E. Kharzeev, L. D. McLerran, and H. J. Warringa, Nucl. Phys. A803, 227 (2008)

▶ Both are equilibrium effects

▶ Nonequilibrium contributions to chiral currents?
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Chiral hydrodynamics beyond local equilibrium

▶ Currents in chiral hydrodynamics:
charge current Jµ

V , axial-charge current Jµ
A, energy-momentum tensor Tµν

▶ Conservation laws

∂µJ
µ
V = 0 , ∂µJ

µ
A = 0 , ∂µT

µν = 0

▶ Out of equilibrium: system of equations of motion not closed

▶ How to describe out-of-equilibrium dynamics of chiral currents?
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Attractors and fixed points

▶ Hydrodynamic-type equations of motion

→ can be derived also independently of gradient expansion

→ good description of underlying microscopic theory even far from local equilibrium

=⇒ attractor solution
M. P. Heller, M. Spalinski, PRL 115 (2015) 7, 072501

▶ Attractor related to existence of fixed points

▶ Modification of coefficients in hydrodynamic equations of motion
=⇒ excellent description of system at any time of evolution
J.-P. Blaizot, L. Yan, AP 412 (2020) 167993, PLB 820 (2021) 136478, PRC 104 (2021) 5, 055201

▶ Generalize for chiral currents?
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Chiral kinetic theory for Bjorken symmetry

▶ Kinetic theory: physics contained in distribution function fλ(x,p)
two chiralities λ = ±1

▶ Boost invariance: can consider only z = 0-slice

▶ Translational invariance in transverse plane: f independent of x and y

▶ Parity breaking in transverse plane: f(px) ̸= f(−px)
New compared to previous works

▶ Boltzmann equation describes dynamics of distribution function(
∂τ − pz

τ
∂pz

)
fλ(τ,p) = − 1

τR

[
fλ(τ,p)− fλ

eq(τ,p)
]

τ proper time relaxation time approximation
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Chiral moments

▶ Express currents through chiral moments

J0
A =

∑
λ=±1

λJ λ
00 , Jx

A =
∑

λ=±1

λReJ λ
11 = Jy

A ,

J0
V =

∑
λ=±1

J λ
00 , Jx

V =
∑

λ=±1

ReJ λ
11 = Jy

V ,

J λ
nℓ ≡

∫
d3p Y ℓ

n(θ, ϕ)f
λ

spherical harmonics,
needed because f depends on both polar momentum angle θ and azimuthal
momentum angle ϕ → parity breaking

▶ Analogously for energy-momentum tensor
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Equations of motion

▶ Derive equations of motion for chiral moments from Boltzmann equation

∂τJ λ
nℓ = − 1

τ

(
anℓJ λ

nℓ + bnℓJ λ
(n−2)ℓ + cnℓJ λ

(n+2)ℓ

)
−

J λ
nℓ − J λ

nℓ,eq

τR
,

transport coefficients

▶ For (axial) charge density, n = 0 = ℓ

∂τJ λ
00 = − 1

τ
J λ

00

ideal equation of motion

▶ For (axial) charge current in transverse plane, n = 1 = ℓ

∂τJ λ
11 = − 1

τ

(
a11J λ

11 + c11J λ
31

)
− J λ

11

τR
,

not known
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Analysis of equation of motion

▶ Two limits of equation of motion

∂τJ λ
11 = − 1

τ

(
a11J λ

11 + c11J λ
31

)
−J λ

11

τR

free streaming: τ ≪ τR collision dominated: τ ≫ τR

▶ Late time: collisions =⇒ exponential decay

J λ
11 ∼ e−τ/τR

▶ Early time: free streaming

∂τJ λ
11 = − 1

τ

(
a11J λ

11 + c11J λ
31

)
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Can we ignore J λ
31?

▶ First attempt: set J λ
31 = 0

▶ Free-streaming solution for J λ
11, setting J λ

(n+2)1 = 0
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▶ This does not look so great
=⇒ Can we do better?
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Stable free-streaming fixed point

▶ Relation between coefficients

anℓPℓ
n(0) + bnℓPℓ

n−2(0) + cnℓPℓ
n+2(0) = Pℓ

n(0)

Pℓ
n(x) associated Legendre polynomials

▶ Solution for equations of motion:

J λ
n1 = [P1

n(0)/P1
1 (0)]J λ

11(0)

Stable free-streaming fixed point

=⇒ solutions with any initial conditions will approach this solution at long time for
free streaming
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Fixed points for naive truncation

▶ Truncation shifts fixed point

▶ Convergence to true fixed point very slow

0.10 1 10 100

t

-2.0

-1.5

-1.0

-0.5

0.0

J31/J11

n=5

n=7

n=13

n=17

n=21

FP

J λ
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1 (0)]J λ
11 = −1.5J λ
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Solutions for naive truncation

▶ Consequence: Attractor solution shifted
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11, setting J λ
1(19) = 0, different initial conditions

▶ Attractor: initial condition at true fixed point

▶ Different initial conditions: damped oscillation around attractor

▶ But attractor solution should be constant
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Fixed-point truncation

▶ Idea: Approximate J λ
1(n+2) ≃ [P1

n+2(0)/P1
1 (0)]J λ

11

▶ Enforces correct behavior of attractor solution
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11, different initial conditions
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Can we approximate J λ
31?

▶ Fixed-point truncation: very good agreement with exact solution even at lowest order
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Free-streaming solution for J λ
11, setting J λ

1(n+2) = [P1
n+2(0)/P1

1 (0)]J λ
11
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Full equations of motion

▶ So far: free streaming

▶ Reminder: late-time dynamics governed by exponential decay

=⇒ Fixing free-streaming fixed point sufficient to describe system during full
evolution

∂τJ λ
11 = − 1

τ

(
a11J λ

11 + c11J λ
31

)
− J λ

11

τR
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Full equations of motion

▶ So far: free streaming

▶ Reminder: late-time dynamics governed by exponential decay

=⇒ Fixing free-streaming fixed point sufficient to describe system during full
evolution

∂τJ λ
11 = − 1

τ
(a11−1.5 c11)J λ

11−
J λ

11

τR
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Energy-momentum tensor I

▶ Similar procedure for components of energy-momentum tensor

▶ Also here: excellent agreement with exact solution
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lowest-order truncation vs. exact solution for T xy
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Energy-momentum tensor II

▶ Also here: excellent agreement with exact solution
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lowest-order truncation vs. exact solution for T xz

▶ T xz decays even faster than other components
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Comparison to 14-moment approximation

▶ Compare to 14-moment approximation (Israel-Stewart)

▶ Consider lowest order truncation

14-moment approximation fixed-point truncation

basis 1, pz/p, (pz/p)2, . . . Pℓ
n(pz/p)

idea neglect O(pz/Ep) approximate Pℓ
n(pz/Ep) → Pℓ

n(0)

effect pz/Ep → 0 pz/Ep → 0

=⇒ Our results are identical to 14-moment approximation
for all moments which vanish in equilibrium

=⇒ Bjorken expansion → distribution function peaked around pz = 0
By chance, 14-moment approximation is consistent with this property
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Conclusions and outlook

▶ All currents are well described by lowest-order fixed-point truncation at any time of
evolution

▶ Parity-violating moments decay exponentially at late time
=⇒ contributions from initial conditions have disappeared at freeze out
=⇒ measurement of spatial chiral currents signature for vorticity or magnetic field

▶ Charge and axial-charge densities follow ideal equations of motion at any time of
evolution
=⇒ local-equilibrium description sufficient to describe full dynamics

▶ Here: translational invariance =⇒ no vorticity

Future: include vorticity =⇒ equilibrium contributions to parity-violating moments

▶ Here: massless particles, chiral degrees of freedom

Future: massive particles, spin
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