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Chiral effects in relativistic heavy-ion collisions

» Imbalance between left- and right-handed particles = axial-vector current

» Currents induced by vorticity
= (axial-) chiral vortical effect

A. Vilenkin, Phys. Rev. D 20, 1807 (1979)
D. T. Son and P. Surowka, Phys. Rev. Lett. 103, 191601 (2009)

» Currents induced by electromagnetic fields

= chiral magnetic effect/ chiral separation effect
D. E. Kharzeev, L. D. McLerran, and H. J. Warringa, Nucl. Phys. A803, 227 (2008)
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» Both are equilibrium effects

» Nonequilibrium contributions to chiral currents?
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Chiral hydrodynamics beyond local equilibrium

» Currents in chiral hydrodynamics:
charge current J!;, axial-charge current JY, energy-momentum tensor TH"

» Conservation laws

Bl =0, 8.k =0, BuT* =0

» Qut of equilibrium: system of equations of motion not closed

» How to describe out-of-equilibrium dynamics of chiral currents?
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Attractors and fixed points

» Hydrodynamic-type equations of motion
— can be derived also independently of gradient expansion
— good description of underlying microscopic theory even far from local equilibrium

= attractor solution
M. P. Heller, M. Spalinski, PRL 115 (2015) 7, 072501

» Attractor related to existence of fixed points

» Modification of coefficients in hydrodynamic equations of motion

—> excellent description of system at any time of evolution
J.-P. Blaizot, L. Yan, AP 412 (2020) 167993, PLB 820 (2021) 136478, PRC 104 (2021) 5, 055201

» Generalize for chiral currents?
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Chiral kinetic theory for Bjorken symmetry

> Kinetic theory: physics contained in distribution function f*(x, p)
two chiralities A = +1

» Boost invariance: can consider only z = 0-slice
» Translational invariance in transverse plane: f independent of z and y

» Parity breaking in transverse plane: f(ps) # f(—pz)
New compared to previous works

» Boltzmann equation describes dynamics of distribution function

(or - 20, ) trw) =~ 1 [P (o) - fatrom)

T proper time relaxation time approximation



Chiral moments

» Express currents through chiral moments

Ja= > A, Jh= ) AReJi = J4,
A==+1 A==+1

=" T Jv = > ReJi =JY,
A==%1 A=+£1

T = / EpYL(6,¢)

spherical harmonics,

needed because f depends on both polar momentum angle 6 and azimuthal
momentum angle ¢ — parity breaking

» Analogously for energy-momentum tensor



Equations of motion

» Derive equations of motion for chiral moments from Boltzmann equation

1 Tne = Tis,e
0Ty = - (an,zjnAe + bneT—2ye + szj()ﬁw)e) — - e

transport coefficients
> For (axial) charge density, n =0="/¢
. 1
0-Too = ——Too
T
ideal equation of motion

> For (axial) charge current in transverse plane, n =1 =1/¢

1 A
a’rjl)\l =7 (U«ujf\l +C1153A1) - % )

R

not known
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Analysis of equation of motion

» Two limits of equation of motion

r_ 1 AL _Jd
0-J1=——(anJi +ends ) —
T TR
free streaming: 7 < Tr collision dominated: 7> T

» Late time: collisions == exponential decay

;71>\1 ~ eiT/TR

> Early time: free streaming

1
2T = - (011\7?1 + Cllj3)\l)



Can we ignore J3)?

> First attempt: set 73 = 0

> Free-streaming solution for J7}, setting ~7(?L+2)1 =0

— n=1

n=3
— n=5
— n=7
— n=9
— n=11
— n=13

n=15
— n=17
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» This does not look so great
= Can we do better?
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Stable free-streaming fixed point

» Relation between coefficients
anePh(0) 4 bnePh_5(0) 4 caePh2(0) = PL(0)

PL () associated Legendre polynomials

» Solution for equations of motion:
Tar = [Pa(0)/P1(0)]711(0)

Stable free-streaming fixed point

—> solutions with any initial conditions will approach this solution at long time for
free streaming

o/ 18



Fixed points for naive truncation

» Truncation shifts fixed point

» Convergence to true fixed point very slow
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T3\ [T\, setting T}, 45y = 0, initial condition 751 = [P3(0)/P1(0)]J1y = —1.571
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Solutions for naive truncation

» Consequence: Attractor solution shifted

J31/J11
00 L L L J t
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-05¢ — 0.9FP
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_1ol — 1.2FP
—— Attractor
— 11 FP
-1.5
_20 L

TN/ TN, setting ;71*(19) = 0, different initial conditions
» Attractor: initial condition at true fixed point
» Different initial conditions: damped oscillation around attractor
» But attractor solution should be constant
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Fixed-point truncation

> |dea: Approximate JIA(nH) ~ [Pr12(0)/PL(0)] T}

» Enforces correct behavior of attractor solution

J31/J11
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T3/ T, setting Ji\1g) = [P1g(0)/P1(0)]J1}, different initial conditions
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Can we approximate [J3)?

» Fixed-point truncation: very good agreement with exact solution even at lowest order

0 . . . i
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— n=1
n=9
— n=17

Free-streaming solution for Ji}, setting J7\,, 12, = [Pn4+2(0)/P1 (0)]77y
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Full equations of motion

» So far: free streaming

» Reminder: late-time dynamics governed by exponential decay

— Fixing free-streaming fixed point sufficient to describe system during full
evolution N
Jh

1
87J1/\1 = - (a11J1/\1 +C11$ﬁ) - —

TR



Full equations of motion

» So far: free streaming

» Reminder: late-time dynamics governed by exponential decay

—> Fixing free-streaming fixed point sufficient to describe system during full
evolution R
1 J

- TN = —= (a11—1.5¢11) Jh—-2L

T TR

—— exact, initial cond. 0.9 FP
exact, initial cond. 1.1 FP
— n=1




Energy-momentum tensor |

» Similar procedure for components of energy-momentum tensor

> Also here: excellent agreement with exact solution

— exact attractor

exact, initial cond. 0.9 FP
—— exact, initial cond. 1.1 FP
— n=2

w
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lowest-order truncation vs. exact solution for 7Y



Energy-momentum tensor |l

» Also here: excellent agreement with exact solution

T_{xz}
3.0¢

25

2.0 — exact attractor
exact, initial cond. 0.9 FP
—— exact, initial cond. 1.1 FP

— n=1
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lowest-order truncation vs. exact solution for T%*

» T%% decays even faster than other components

16 / 18



Comparison to 14-moment approximation

» Compare to 14-moment approximation (Israel-Stewart)

» Consider lowest order truncation

14-moment approximation fixed-point truncation

basis 1, p=/p. (p=/p)% ... Pr(p=/p)
idea neglect O(p./Ep) approximate P}, (p./E,) — P5(0)
effect

p:/Ep =0 p2/Ep — 0

== Our results are identical to 14-moment approximation
for all moments which vanish in equilibrium

—> Bjorken expansion — distribution function peaked around p. = 0

By chance, 14-moment approximation is consistent with this property



Conclusions and outlook

» All currents are well described by lowest-order fixed-point truncation at any time of
evolution

» Parity-violating moments decay exponentially at late time
—> contributions from initial conditions have disappeared at freeze out
= measurement of spatial chiral currents signature for vorticity or magnetic field

» Charge and axial-charge densities follow ideal equations of motion at any time of
evolution
= local-equilibrium description sufficient to describe full dynamics

» Here: translational invariance == no vorticity
Future: include vorticity == equilibrium contributions to parity-violating moments

» Here: massless particles, chiral degrees of freedom

Future: massive particles, spin

18 / 18



