*SPECTER***: Efficient Evaluation of the Spectral EMD**

Rikab Gambhir

Email me questions at [rikab@mit.edu!](mailto:rikab@mit.edu) Based on [RG, Larkoski, Thaler, 23XX.XXXX]

Rikab Gambhir – ML4Jets – 08 November 2023

1

The **Wasserstein Metric,** a.ka. **Earth/Energy Mover's Distance (EMD)** has seen increasing interest in jet physics:

Not an exhaustive list, let me know if I haven't included your recent EMD application!

Today …

Making the EMD and associated observables *easier* and *faster* to calculate using the **Spectral EMD** (SEMD) and *SPECTER*

$$
\frac{\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{
$$

$$
\text{SEMD}_{\beta,p=2}(s_A, s_B) = \sum_{i < j \in \mathcal{E}_A} 2E_i E_j \omega_{ij}^2 + \sum_{i < j \in \mathcal{E}_B} 2E_i E_j \omega_{ij}^2
$$
\n
$$
- 2 \sum_{n \in \mathcal{E}_A^2, l \in \mathcal{E}_B^2} \omega_n \omega_l \left(\min \left[S_A(\omega_n^+), S_B(\omega_l^+) \right] - \max \left[S_A(\omega_n^-), S_B(\omega_l^-) \right] \right)
$$
\n
$$
\times \Theta \left(S_A(\omega_n^+) - S_B(\omega_l^-) \right) \Theta \left(S_B(\omega_l^+) - S_A(\omega_n^-) \right) ,
$$

SPECTER

Logo made with DALL-E. Preliminary.

 10^6 = 10k events \times ~150 epochs

Central Idea: use the **Spectral EMD**¹!

For $p = 2$, possible to find an exact solution for the optimal transport problem on the spectral representation of events:

$$
\text{SEMD}_{\beta,p=2}(s_A, s_B) = \sum_{i < j \in \mathcal{E}_A} 2E_i E_j \omega_{ij}^2 + \sum_{i < j \in \mathcal{E}_B} 2E_i E_j \omega_{ij}^2
$$
\n
$$
-2 \sum_{n \in \mathcal{E}_A^2, l \in \mathcal{E}_B^2} \omega_n \omega_l \left(\min \left[S_A(\omega_n^+), S_B(\omega_l^+) \right] - \max \left[S_A(\omega_n^-), S_B(\omega_l^-) \right] \right)
$$
\n
$$
\times \Theta \left(S_A(\omega_n^+) - S_B(\omega_l^-) \right) \Theta \left(S_B(\omega_l^+) - S_A(\omega_n^-) \right),
$$

Can be computed exactly in $O(N^2 \log N)$, as opposed to the full EMD in $O(N^3)$ Closed form, easy derivatives and extremely easy to calculate programmatically!

this, built in Python with JAX

See also: Sinkhorn, Sliced Wasserstein, WGANs, Linearized EMDs, …

Technical Details … ! :

EMD = Work done to move "dirt" optimally

Problem on the
$$
\overrightarrow{sp}
$$
 EMD is defined as (1D OT!): $\text{SEMD}_{\beta,p}(s_A, s_B) \equiv \int_0^{E_{\text{tot}}^2} dE^2 |S_A^{-1}(E^2) - S_B^{-1}(E^2)|^p$

S = **cumulative spectral function**

¹[Larkoski, Thaler, [2305.03751\]](https://arxiv.org/abs/2305.03751) [Larkoski, **RG**, Thaler, 23XX.XXXX]

± indicates whether or not to include *ω* in the sum

$$
-2\sum_{n\in\mathcal{E}_A^2, l\in\mathcal{E}_B^2} \omega_n \omega_l \left(\min\left[S_A(\omega_n^+), S_B(\omega_l^+)\right] - \max\left[S_A(\omega_n^-), S_B(\omega_l^-)\right] \right)
$$

$$
\times \Theta\left(S_A(\omega_n^+) - S_B(\omega_l^-)\right) \Theta\left(S_B(\omega_l^+) - S_A(\omega_n^-)\right),
$$

The trick: Sum over pairs *n* event.

For $p = 2$, possible

Looks like *O(N⁴)*, but with clever sorting & indexing in 1D*,* reduces to *O(N²)*!

For events *A*, *B*, the *p* **spectral EMD** is defined as (1D OT!):

$$
s(\omega) = \sum_{i=1}^{N} \sum_{j=1}^{N} E_i E_j \, \delta(\omega - \omega(\hat{n}_i, \hat{n}_j))
$$

Pairwise Distances

Reduces events to 1D, while preserving all* information about the event, up to translations and rotations.

 $\mathrm{SEMD}_{\beta,p=2}(s_A,s_B) = \sum 2E_iE_j\omega_{ij}^2 + \sum 2E_iE_j\omega_{ij}^2$

With a geometry based metric, we can now define IRC-safe **shape observables** by finding events that minimize the metric:

 $\mathcal{O}(\mathcal{E}) = \min_{\mathcal{E}' \in \mathcal{M}}[\text{SEMD}(s(\mathcal{E}), s(\mathcal{E}')]$

e.g. How 2-pointy are jets? (*2-subjettiness)* Minimize the metric over 2-particle events

Pictured: Approximating the *2-subjettiness* with the spectral *2-s(pr)ubjettiness*, which is much faster!

Closed form: Only need to solve for $2E_1E_2$

Not all spectral functions correspond to a physical event, so we must choose whether we minimize over events or spectral functions – ask me about "ghost events" later!

Full Example: How "ring-like" are jets?

Shapes are parameterized distributions of energy on the detector space.

Many of your favorite observables, like *N-*(sub)jettiness, thrust, and angularities take the form of finding the shape that best fits an event's energy distribution.

Custom shapes define custom IRC-safe observables – to define a shape, all you need is to define a parameterized energy distribution and how to sample points from it!

The *p = 2* spectral EMD between two sets of discrete points has a closed-form solution with only binary discrete minimizations.

We discretize our shape by randomly sampling points from it.

If the spectral functions are sorted, can compute the SEMD in $\sim O(N^2 \text{log} N)$ time!

Step 2: Sample from Parameterized Shapes

$$
{}^{l\in \mathcal{E}_B^2} \times \Theta \left(S_A(\omega_n^+) - S_B(\omega_l^-) \right) \Theta \left(S_B(\omega_l^+) - S_A(\omega_n^-) \right) ,
$$

Key difference from previous work: We use the SEMD, *not* the EMD!

We have an explicit formula for the spectral EMD, so we can automatically differentiate through it

Standard ML procedure: Sample, calculate gradients, gradient descent, repeat! Analogous to WGANS.

Pictured: Animation of optimizing for the radius *R*

Full Example: How "ring-like" are jets?

SPECTER is our code interface for performing these steps: sampling from user-defined shapes, calculating spectral functions and differentiable EMDS, and optimizing over parameters.

> Built in highly parallelized and compiled JAX

SPECTER Our code framework

Step 2: Sample from Parameterized Shapes

events and shapes

$$
\text{SEMD}_{\beta,p=2}(s_A, s_B) = \sum_{i < j \in \mathcal{E}_A} 2E_i E_j \omega_{ij}^2 + \sum_{i < j \in \mathcal{E}_B} 2E_i E_j \omega_{ij}^2
$$
\n
$$
-2 \sum_{n \in \mathcal{E}_A^2, l \in \mathcal{E}_B^2} \omega_n \omega_l \left(\min \left[S_A(\omega_n^+), S_B(\omega_l^+) \right] - \max \left[S_A(\omega_n^-), S_B(\omega_l^-) \right] \right)
$$
\n
$$
\times \Theta \left(S_A(\omega_n^+) - S_B(\omega_l^-) \right) \Theta \left(S_B(\omega_l^+) - S_A(\omega_n^-) \right) ,
$$

Key difference from previous work: We use the SEMD, *not* the EMD!

Step 4: Minimize w.r.t. parameters using grads

SPECTER is a "sequel" to SHAPER, introduced last ML4Jets. SPECTER is *not* an acronym, don't ask me what it stands for.

To distinguish SEMD observables from EMD observables, I will add "s" or "sp"

Hearing Jets (sp)Ring

EMD Spectral EMD

Hearing Jets (sp)Ring

Runtimes (Laptop CPU 12th Gen Intel(R) Core(TM) i7-1255U): *SHAPER (EMD)*: ~ 3 hours / 10k events **Generalized** *SPECTER*: ~15 minutes / 10k events **Closed Form** *SPECTER*: ~3 seconds / 10k events

The SEMD and EMD give qualitatively different radii! We can try to use our expression for R_{opt} to do fixed-order calculations to try to understand the the SEMD result:

Hearing Jets (sp)Ring

Runtimes (Laptop CPU 12th Gen Intel(R) Core(TM) i7-1255U): *SHAPER (EMD)*: ~ 3 hours / 10k events **Generalized** *SPECTER*: ~15 minutes / 10k events **Closed Form** *SPECTER*: ~3 seconds / 10k events

The SEMD and EMD give qualitatively different radii! We can try to use our expression for R_{opt} to do fixed-order calculations to try to understand the the SEMD result:

$$
R_{\rm opt} = \frac{2}{\pi} \omega \sin \left(z(1 - z)\pi \right)
$$

$$
\frac{d\sigma^{\rm LO}}{dR_{\rm opt}} \sim \frac{\alpha_S}{\pi} \sum_{i=q,g} f_i \int_0^R \frac{d\theta}{\theta} \int_0^1 dz P_i(z) \delta(R_{\rm opt} - R_{\rm opt}(z,\theta))
$$

quark/gluon fraction quark/gluon splitting function

Hearing Jets (sp)Ring

Runtimes (Laptop CPU 12th Gen Intel(R) Core(TM) i7-1255U): *SHAPER (EMD)*: ~ 3 hours / 10k events **Generalized** *SPECTER*: ~15 minutes / 10k events **Closed Form** *SPECTER*: ~3 seconds / 10k events

The SEMD and EMD give qualitatively different radii! We can try to use our expression for R_{opt} to do fixed-order calculations to try to understand the the SEMD result:

$$
R_{\rm opt} = \frac{2}{\pi} \omega \sin \left(z(1 - z)\pi \right)
$$

$$
\frac{d\sigma^{\rm LO}}{dR_{\rm opt}} \sim \frac{\alpha_S}{\pi} \sum_{i=q,g} f_i \int_0^R \frac{d\theta}{\theta} \int_0^1 dz P_i(z) \delta(R_{\rm opt} - R_{\rm opt}(z,\theta))
$$

quark/gluon fraction quark/gluon splitting function

It's possible to gain a first-principles understanding of these ML-inspired observables!

Things to think about:

17

- The current implementation of SPECTER, shown today takes $O(N^2)$ more memory than it ideally needs to, but this is not a fundamental issue and can be solved by staring at JAX documentation for even longer.
- \bullet For pairs of events with just a few particles, the SEMD and EMD^2 agree exactly before degenerate points in phase space – can we identify precisely when this happens?
- Not every shape has a completely closed-form solution, but it is usually possible to partially simplify and reduce the problem to 1D minimization, 1D root finding, or simple 1D numeric integrals.
- Closed-form and simple expressions means perturbative calculations may be possible – can we predict the radius of a jet?

18

The **spectral EMD** can be used as an alternative to, or an approximation of, the EMD. It is **fast** and **easy to minimize**.

SPECTER is a code package for efficiently evaluating the spectral EMD and calculating shape observables.

SPECTER

With the spectral EMD, many jet observables can be understood in **closed form**.

More questions? Email me at rikab@mit.edu

Appendices

Degeneracies

Highly symmetric configurations have degenerate spectral functions!

e.g. Equilateral Triangles* "look like" 2 particle events in their spectral functions!

*with the right energy weights.

Degeneracies (Continued)

For this precise energy configuration, equilateral triangles are *exactly* degenerate with 2 particle events – so the spectral EMD only sees 2 particles!

Only measure 0 configuration of events – but events *near* this give spectral EMDs *near* zero against 2 particle events.

*with the right energy weights

SPECTER ^{Our code framework}

Full Example: How "ring-like" are jets?

Pictured: 10k Jets, CMS 2011AJets Open Sim

Step 2: Sample from Parameterized Shapes

events and shapes

$$
\text{SEMD}_{\beta,p=2}(s_A, s_B) = \sum_{i < j \in \mathcal{E}_A} 2E_i E_j \omega_{ij}^2 + \sum_{i < j \in \mathcal{E}_B} 2E_i E_j \omega_{ij}^2
$$
\n
$$
-2 \sum_{n \in \mathcal{E}_A^2, l \in \mathcal{E}_B^2} \omega_n \omega_l \left(\min \left[S_A(\omega_n^+), S_B(\omega_l^+) \right] - \max \left[S_A(\omega_n^-), S_B(\omega_l^-) \right] \right)
$$
\n
$$
\times \Theta \left(S_A(\omega_n^+) - S_B(\omega_l^-) \right) \Theta \left(S_B(\omega_l^+) - S_A(\omega_n^-) \right) \,,
$$

Key difference from previous work: We use the SEMD, *not* the EMD!

Step 4: Minimize w.r.t. parameters using grads

