Beyond Kinematics: Generating Jets with Particle-ID and Trajectory Displacement Information

Joschka Birk, Erik Buhmann, Cedric Ewen, Anna Hallin, Gregor Kasieczka, David Shih joschka.birk@uni-hamburg.de

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

ML4Jets 2023

November 7, 2023

Motivation and dataset overview

- JetClass: public dataset [1] introduced in ParT [2] paper
- **Motivation:** can we generate all jet types from the JetClass dataset with these additional features?

	JetNet [3]	
Jet types	5 types	10 [.]
Dataset size	180 thousand jets per class	12
Features	Kinematics	Kinem

Kinematics:

 p_T, η, ϕ

Trajectory displacement :

 d_0 : closest approach to interaction point in xy-plane d_{z} : z position where d_{0} is evaluated

Model overview

- Training on the **flow matching objective** [1] \rightarrow model represents the vector field $v(x, t) = \frac{dx_t}{dt}$
- **Generation**: sample from $p_{\text{base}}(x)$ and **integrate ODE**
- Model architecture based on EPiC layers [2] and similar to EPiC-FM model [3, 4]
- Model is **conditioned on jet type**, jet η and jet $p_{\rm T}$
- Model generates 13 features:
 - 3 kinematic features: $p_{\rm T}^{\rm rel}$, $\eta^{\rm rel}$, $\phi^{\rm rel}$
 - 4 trajectory displacement features: d_0 , d_z , σ_{d_0} , σ_{d_z}
 - 6 discrete features: isElectron, isMuon, isChargedHadron, isNeutralHadron, isPhoton, charge

$$x \propto p_{data}$$
 at $t = 0$
Flow Matching (Lipman et al.)

Image from arXiv:2302.00482

[1] Lipman et al. (2023) "Flow Matching for Generative Modeling" [2] Buhmann et al. (2023) "EPiC-GAN: Equivariant point cloud generation for particle jets" [3] Cedric's talk at ML4Jets [4] Buhmann et al. (2023) "EPiC-ly Fast Particle Cloud Generation with Flow-Matching and Diffusion"

Jet mass and jet substructure

Mass distributions:

Very good agreement!

We know:

subjettiness ratio τ_{32} hard to model

- Good agreement for most jet types
- Largest disagreement for

 $t \rightarrow bqq'$ and $H \rightarrow \ell \nu qq'$ jets

 \rightarrow model struggles a bit with 3-prong jets

	W_1^m	$W_1^{ au_{21}}~(\cdot 10^{-3})$	$W_1^{ au_{32}}~(\cdot 10^{-3})$
Truth (q/g) Gen. (q/g)	$egin{array}{c} 0.5\pm0.1\ 0.5\pm0.2 \end{array}$	$\begin{array}{c} 1.6\pm0.4\\ 6\pm1 \end{array}$	$0.9\pm0.2\ 1.3\pm0.4$
Truth $(H \to b\bar{b})$ Gen. $(H \to b\bar{b})$	$0.28 \pm 0.09 \\ 0.54 \pm 0.09$	$\begin{array}{c} 1.6 \pm 0.5 \\ 6 \pm 1 \end{array}$	$1.0 \pm 0.4 \\ 4.1 \pm 0.9$
Truth $(H \to \ell \nu q q')$ Gen. $(H \to \ell \nu q q')$	$0.4 \pm 0.1 \\ 0.67 \pm 0.09$	$egin{array}{c} 1.5 \pm 0.7 \ 5.2 \pm 0.7 \end{array}$	$\begin{array}{c} 1.5\pm0.4\\ 19\pm1 \end{array}$
Truth $(Z \to q\bar{q})$ Gen. $(Z \to q\bar{q})$	$\begin{array}{c} 0.32 \pm 0.07 \\ 0.64 \pm 0.05 \end{array}$	$1.3 \pm 0.4 \\ 9.1 \pm 0.8$	1.0 ± 0.3 1.3 ± 0.2
Truth $(t \rightarrow bqq')$ Gen. $(t \rightarrow bqq')$	$0.29 \pm 0.08 \\ 0.9 \pm 0.1$	$\begin{array}{c} 1.7 \pm 0.4 \\ 7.9 \pm 0.5 \end{array}$	$egin{array}{c} 1.7\pm0.5\ 35.4\pm0.8 \end{array}$

Jet mass and jet substructure

Mass distributions:

Very good agreement!

We know:

subjettiness ratio τ_{32} hard to model

- Good agreement for most jet types
- Largest disagreement for
 - $t \rightarrow bqq'$ and $H \rightarrow \ell \nu qq'$ jets
- \rightarrow model struggles a bit with 3-prong jets

	W_1^m	$W_1^{ au_{21}}~(\cdot 10^{-3})$	$W_1^{ au_{32}}~(\cdot 10^{-3})$
Truth (q/g) Gen. (q/g)	$egin{array}{c} 0.5\pm0.1\ 0.5\pm0.2 \end{array}$	$egin{array}{c} 1.6\pm0.4\ 6\pm1 \end{array}$	$egin{array}{c} 0.9\pm0.2\ 1.3\pm0.4 \end{array}$
Truth $(H \to b\bar{b})$ Gen. $(H \to b\bar{b})$	$0.28 \pm 0.09 \\ 0.54 \pm 0.09$	$\begin{array}{c} 1.6\pm0.5\\ 6\pm1 \end{array}$	$1.0 \pm 0.4 \\ 4.1 \pm 0.9$
Truth $(H \to \ell \nu q q')$ Gen. $(H \to \ell \nu q q')$	$0.4 \pm 0.1 \\ 0.67 \pm 0.09$	$egin{array}{c} 1.5 \pm 0.7 \ 5.2 \pm 0.7 \end{array}$	$\begin{array}{c} 1.5\pm0.4\\ 19\pm1 \end{array}$
Truth $(Z \to q\bar{q})$ Gen. $(Z \to q\bar{q})$	$\begin{array}{c} 0.32 \pm 0.07 \\ 0.64 \pm 0.05 \end{array}$	$1.3 \pm 0.4 \\ 9.1 \pm 0.8$	$\begin{array}{c} 1.0\pm0.3\\ 1.3\pm0.2\end{array}$
Truth $(t \rightarrow bqq')$ Gen. $(t \rightarrow bqq')$	$0.29 \pm 0.08 \\ 0.9 \pm 0.1$	$1.7 \pm 0.4 \\ 7.9 \pm 0.5$	$egin{array}{c} 1.7\pm0.5\ 35.4\pm0.8 \end{array}$

Jet mass and jet substructure

Mass distributions:

Very good agreement!

We know:

subjettiness ratio τ_{32} hard to model

- Good agreement for most jet types
- Largest disagreement for
 - $t \rightarrow bqq'$ and $H \rightarrow \ell \nu qq'$ jets
- \rightarrow model struggles a bit with 3-prong jets

	$ W_1^m$	$W_1^{ au_{21}}~(\cdot 10^{-3})$	$W_1^{ au_{32}}~(\cdot 10^{-3})$
Truth (q/g) Gen. (q/g)	$egin{array}{c} 0.5\pm0.1\ 0.5\pm0.2 \end{array}$	$egin{array}{c} 1.6\pm0.4\ 6\pm1 \end{array}$	$\begin{array}{c} 0.9\pm0.2\\ 1.3\pm0.4 \end{array}$
Truth $(H \to b\bar{b})$ Gen. $(H \to b\bar{b})$	$0.28 \pm 0.09 \\ 0.54 \pm 0.09$	$\begin{array}{c} 1.6\pm0.5\\ 6\pm1 \end{array}$	$1.0 \pm 0.4 \\ 4.1 \pm 0.9$
Truth $(H \to \ell \nu q q')$ Gen. $(H \to \ell \nu q q')$	$0.4 \pm 0.1 \\ 0.67 \pm 0.09$	$egin{array}{c} 1.5\pm0.7\ 5.2\pm0.7 \end{array}$	$\begin{array}{c} 1.5\pm0.4\\ 19\pm1 \end{array}$
Truth $(Z \to q\bar{q})$ Gen. $(Z \to q\bar{q})$	$0.32 \pm 0.07 \\ 0.64 \pm 0.05$	$\begin{array}{c} 1.3\pm0.4\\ 9.1\pm0.8\end{array}$	$egin{array}{c} 1.0\pm0.3\ 1.3\pm0.2 \end{array}$
Truth $(t \rightarrow bqq')$ Gen. $(t \rightarrow bqq')$	$0.29 \pm 0.08 \\ 0.9 \pm 0.1$	$\begin{array}{c} 1.7\pm0.4\\ 7.9\pm0.5\end{array}$	$egin{array}{c} 1.7\pm0.5\ 35.4\pm0.8 \end{array}$

.....

0.05

Normalized 0.03 0.02

0.03

0.01

0.00

6

4

2

0

Normalized

.....

0.2

Kinematic particle features

- Looking at two very different types of jets here
 - $t \rightarrow bqq'$ jets:
 - Wider: larger η^{rel}
 - More constituents: smaller $p_{\rm T}^{\rm rel}$
 - <u>q/g jets:</u>
 - Narrow: smaller η^{rel}
 - Fewer constituents: larger $p_{\rm T}^{\rm rel}$
- Very good agreement in W1-distances:

	$ W_1^{p_{\mathrm{T}}^{\mathrm{rel}}} (\cdot 10^{-3})$	$W_1^{\eta^{ m rel}}~(\cdot 10^{-3})$	$W_1^{\phi^{ m rel}}$ (.10
Truth (q/g) Gen. (q/g)	$\begin{array}{c} 0.12 \pm 0.03 \\ 0.11 \pm 0.02 \end{array}$	$egin{array}{c} 0.7\pm0.2\ 0.8\pm0.2 \end{array}$	$\begin{array}{c} 0.8\pm0\ 0.7\pm0 \end{array}$
Truth $(t \rightarrow bqq')$ Gen. $(t \rightarrow bqq')$	$\begin{array}{c} 0.05 \pm 0.01 \\ 0.10 \pm 0.02 \end{array}$	$egin{array}{c} 0.7\pm0.2\ 0.9\pm0.3 \end{array}$	$\begin{array}{c} 0.8\pm0 \\ 1.1\pm0 \end{array}$

Particle-ID features

Mean values $\pm 1\sigma$

•	Post-processing for discrete features:	Ele
	 Particle-ID: argmax 	
	Charge: rounded	Pr
•	Particle-ID is very well modeled	
		Neutral ha

Charged hadrons

Trajectory displacement modeling

- Impact parameter (IP) d_0 and d_7 :
- IP of neutral particles is set to 0

Performance overview

Beyond Kinematics: Generating Jets with Particle-ID and Trajectory Displacement Information

Improved models for $t \rightarrow bqq'$ jets

Trained two modified versions of our model:

1. Generating kinematic features only ($\eta^{\text{rel}}, \phi^{\text{rel}}, p_{\text{T}}^{\text{rel}}$) 2. Generating kinematic features only ($\eta^{rel}, \phi^{rel}, p_T^{rel}$) + trained on $t \rightarrow bqq'$ only Kinematic features only improves modeling of jet substructure

- Training on top jets only increases agreement in τ_{32} but decreases agreement in τ_{21} \rightarrow training on different jet types simultaneously seems to help

	$W_1^{\tau_{21}}$ (·10 ⁻³)	$W_1^{ au_{32}}$
Truth	1.7 ± 0.4	1.7
Gen. (all features)	7.9 ± 0.5	35.
Gen. (kin. features)	3.6 ± 0.7	13.
Gen. (kin. features $+$ top only)	4.8 ± 0.7	11.

Investigate $t \rightarrow bqq'$ jets with a classifier test

- Train **ParT-kin** [1] to distinguish between real and fake jets ($t \rightarrow bqq'$ only)
- Split into three regions: $p_{real} \gg p_{fake}$, $p_{real} \approx p_{fake}$, $p_{real} \ll p_{fake}$
- Substructure for fake jets from different regions:
 - Fake jets with $p_{real} \approx p_{fake}$ show good agreement in jet substructure
 - Especially fake jets with $p_{real} \ll p_{fake}$ lead to disagreement in inclusive τ_{21} and τ_{32} distributions

 \rightarrow Classifier output is consistent with the mis-modeling we see in the jet substructure

[1] Qu et al. (2022) "Particle Transformer for Jet Tagging"

Summary

- JetClass dataset [1] opens new possibilities for generative modeling prototyping
 - significantly larger dataset than JetNet
 - more features that can be investigated
- Our flow-matching based model accurately generates jets from the JetClass dataset
 - **One model for all 10 jet types**
 - Generated jet constituents include Particle-ID and trajectory displacement information

[1] Qu et al. (2022) "JetClass: A Large-Scale Dataset for Deep Learning in Jet Physics"

11

Investigate $t \rightarrow bqq'$ jets with a classifier test

12

N-subjettiness calculation and visualization

- Cluster into N exclusive subjets
- Calculate p_T -weighted sum of distances to closest subjet axis

$$\tau_{2} = \frac{1}{d_{0}} \sum_{i} p_{T,i} \min\{\Delta R_{1,i}, \Delta R_{2,i}\}$$

$$\tau_{3} = \frac{1}{d_{0}} \sum_{i} p_{T,i} \min\{\Delta R_{1,i}, \Delta R_{2,i}, \Delta R_{3,i}\}$$

- We then look at ratio $\tau_{32} = \tau_3/\tau_2$
- **3-prong jets:** expect τ_{32} to **peak at small value**
- 2-prong jets: expect τ_{32} to peak at larger value

 η

Beyond Kinematics: Generating Jets with Particle-ID and Trajectory Displacement Information

 η

Jet substructure

Beyond Kinematics: Generating Jets with Particle-ID and Trajectory Displacement Information

14

Constituent features definitions

Table 2: Jet constituent features used for the studies in this paper. All features are either taken directly from the JETCLASS dataset or calculated from existing entries in the JETCLASS dataset.

Category	Variable	Definition
Kinematics	$\eta^{ m rel} \ \phi^{ m rel} \ p^{ m rel}_{ m T}$	Difference in p Difference in a Fraction of the
Trajectory displacement	$egin{array}{c} d_0 \ d_z \ \sigma_{d_0} \ \sigma_{d_z} \end{array}$	Transverse imp Longitudinal in Error of measu Error of measu
Particle identification	charge isChargedHadron isNeutralHadron isPhoton isElectron isMuon	Electric charge Flag if the par Flag if the par

pseudorapidity η between the particle and the jet axis azimuthal angle ϕ between the particle and the jet axis e particle $p_{\rm T}$ and the jet $p_{\rm T}$

- pact parameter value
- mpact parameter value
- ured transverse impact parameter
- ured longitudinal impact parameter

```
e of the particle
rticle is a charged hadron (|pid|==211 or 321 or 2212)
rticle is a neutral hadron (|pid|==130 or 2112 or 0)
rticle is a photon (pid==22)
rticle is an electron (|pid|==11)
rticle is a muon (|pid|==13)
```


Metrics for constituent-level features

Table 4: W_1 distances of the constituent features for the baseline model.

	$W_1^{p_{\rm T}^{ m rel}}~(\cdot 10^{-3})$	$W_1^{\eta^{ m rel}}~(\cdot 10^{-3})$	$W_1^{\phi^{ m rel}}$ (.10 ⁻³)	$ W_1^{d_0} \ (\cdot 10^{-3})$	$W_1^{d_{\pmb{z}}}~(\cdot 10^{-3})$	$ W_1^{\text{charge}} (\cdot 10^{-3})$
$\begin{array}{c c} \text{Truth (QCD)} \\ \text{Gen. (QCD)} \end{array}$	$\begin{array}{c} 0.12 \pm 0.03 \\ 0.11 \pm 0.02 \end{array} \right $	$\begin{array}{c} 0.7\pm0.2 \\ 0.8\pm0.2 \end{array}$	$\begin{array}{ } 0.8 \pm 0.3 \\ 0.7 \pm 0.2 \end{array}$	$\begin{vmatrix} 27 \pm 4 \\ 90 \pm 10 \end{vmatrix}$	$\begin{array}{c} 18\pm3\\ 50\pm9 \end{array}$	$\begin{vmatrix} 0.5 \pm 0.3 \\ 0.7 \pm 0.4 \end{vmatrix}$
Truth (Hbb) Gen. (Hbb)	$\begin{array}{c} 0.07 \pm 0.02 \\ 0.08 \pm 0.02 \end{array} \right $	$0.7 \pm 0.1 \\ 1.0 \pm 0.2$	$egin{array}{c} 0.7 \pm 0.2 \ 1.0 \pm 0.2 \end{array}$	$\begin{vmatrix} 23 \pm 5 \\ 100 \pm 10 \end{vmatrix}$	$\begin{array}{c} 12\pm1\\ 57\pm6\end{array}$	$\begin{vmatrix} 0.5 \pm 0.2 \\ 0.7 \pm 0.4 \end{vmatrix}$
Truth (Hcc) Gen. (Hcc)	$\begin{array}{c} 0.07 \pm 0.02 \\ 0.12 \pm 0.04 \end{array} \right $	$\begin{array}{c} 0.7\pm0.2\\ 0.7\pm0.3 \end{array}$	$egin{array}{c} 1.0 \pm 0.3 \ 1.0 \pm 0.2 \end{array}$	$ \begin{array}{c c} 22 \pm 4 \\ 80 \pm 10 \end{array} $	$egin{array}{c} 17\pm3\ 42\pm7 \end{array}$	$\begin{vmatrix} 0.6 \pm 0.6 \\ 0.6 \pm 0.2 \end{vmatrix}$
Truth (Hgg) Gen. (Hgg)	$\begin{array}{c} 0.031 \pm 0.008 \\ 0.039 \pm 0.007 \end{array} \right $	$0.5 \pm 0.2 \\ 0.6 \pm 0.1$	$\begin{vmatrix} 0.6 \pm 0.2 \\ 0.7 \pm 0.2 \end{vmatrix}$	$ \begin{array}{c c} 25 \pm 6 \\ 100 \pm 10 \end{array} $	$\begin{array}{c} 14\pm2\\ 53\pm6\end{array}$	$\begin{array}{c c} 0.5 \pm 0.3 \\ 0.9 \pm 0.3 \end{array}$
Truth (H4q) Gen. (H4q)	$\begin{array}{c} 0.05 \pm 0.01 \\ 0.06 \pm 0.02 \end{array} \right $	$egin{array}{c} 0.4\pm0.1\ 0.7\pm0.2 \end{array}$	$\begin{vmatrix} 0.6 \pm 0.2 \\ 0.8 \pm 0.2 \end{vmatrix}$	$\begin{vmatrix} 27 \pm 8 \\ 110 \pm 20 \end{vmatrix}$	$\begin{array}{c} 14\pm3\\ 66\pm8 \end{array}$	$\begin{vmatrix} 0.5 \pm 0.3 \\ 0.6 \pm 0.2 \end{vmatrix}$
Truth (Hqql) Gen. (Hqql)	$\begin{array}{c} 0.11 \pm 0.03 \\ 0.38 \pm 0.05 \end{array}$	$0.8 \pm 0.3 \\ 1.2 \pm 0.3$	$egin{array}{c} 0.7 \pm 0.3 \ 1.5 \pm 0.3 \end{array}$	$\begin{vmatrix} 30 \pm 10 \\ 88 \pm 7 \end{vmatrix}$	$egin{array}{c} 15\pm4\ 55\pm7 \end{array}$	$\begin{vmatrix} 0.7 \pm 0.5 \\ 0.6 \pm 0.3 \end{vmatrix}$
Truth (Zqq) Gen. (Zqq)	$\begin{array}{c} 0.09 \pm 0.02 \\ 0.10 \pm 0.02 \end{array}$	$0.7 \pm 0.2 \\ 0.8 \pm 0.2$	$\begin{array}{c} 0.8 \pm 0.2 \\ 0.9 \pm 0.2 \end{array}$	$\begin{array}{c} 24\pm 6\\ 81\pm 7\end{array}$	$egin{array}{c} 16\pm4\ 44\pm5 \end{array}$	$\begin{vmatrix} 0.7 \pm 0.2 \\ 1.0 \pm 0.3 \end{vmatrix}$
Truth (Wqq) Gen. (Wqq)	$\begin{array}{c} 0.09 \pm 0.02 \\ 0.10 \pm 0.02 \end{array}$	$0.8 \pm 0.3 \\ 0.8 \pm 0.2$	$\begin{array}{ c c c c c } 0.7 \pm 0.2 \\ 0.8 \pm 0.2 \end{array}$	$ \begin{array}{c c} 29 \pm 8 \\ 110 \pm 20 \end{array} $	$\begin{array}{c} 18\pm 4\\ 56\pm 8\end{array}$	$\begin{vmatrix} 1.0 \pm 0.3 \\ 0.9 \pm 0.3 \end{vmatrix}$
Truth (Tbqq) Gen. (Tbqq)	$\begin{array}{c} 0.05 \pm 0.01 \\ 0.10 \pm 0.02 \end{array} \right $	$\begin{array}{c} 0.7\pm0.2\\ 0.9\pm0.3 \end{array}$	$0.8 \pm 0.1 \\ 1.1 \pm 0.3$	$\begin{array}{c} 23 \pm 5 \\ 68 \pm 9 \end{array}$	$egin{array}{c} 14\pm2\ 44\pm3 \end{array}$	$\begin{vmatrix} 0.6 \pm 0.2 \\ 0.7 \pm 0.3 \end{vmatrix}$
Truth (Tbl) Gen. (Tbl)	$\begin{array}{c} 0.17 \pm 0.04 \\ 0.41 \pm 0.09 \end{array}$	$\begin{array}{c} 0.9\pm0.3\\ 1.6\pm0.4\end{array}$	$1.2 \pm 0.2 \\ 1.8 \pm 0.5$	$\begin{array}{c} 25\pm 4\\ 80\pm 10 \end{array}$	$egin{array}{c} 17\pm3\ 41\pm3 \end{array}$	$0.5 \pm 0.2 \\ 0.6 \pm 0.4$

Metrics for jet-level features

Table 8: Wasserstein metrics for the baseline model and the model that is restricted to kinematic features only. For hadronic top jets, also two models were trained on hadronic top jets only.

	W_1^m	$W_1^{m_{ m rel}}~(\cdot 10^{-3})$	$\mid W_{1}^{ m P} \; (\cdot 10^{-3})$	$ W_1^{ au_{21}} \ (\cdot 10^{-3})$	$ W_1^{ au_{32}} \ (\cdot 10^{-3})$	$W_1^{D_2}~(\cdot 10^{-2})$
Truth (QCD) Gen. (QCD) Gen. kin (QCD)	$\begin{array}{c c} 0.5 \pm 0.1 \\ 0.5 \pm 0.2 \\ 0.6 \pm 0.2 \end{array}$	$\begin{array}{c} 0.6 \pm 0.1 \\ 1.0 \pm 0.2 \\ 0.8 \pm 0.2 \end{array}$	$\begin{array}{c c} 0.5 \pm 0.2 \\ 0.5 \pm 0.2 \\ 0.6 \pm 0.2 \end{array}$	$\begin{vmatrix} 1.6 \pm 0.4 \\ 6 \pm 1 \\ 4.0 \pm 0.6 \end{vmatrix}$	$\begin{array}{c c} 0.9 \pm 0.2 \\ 1.3 \pm 0.4 \\ 1.2 \pm 0.3 \end{array}$	$3.5 \pm 0.9 \\ 7 \pm 2 \\ 4 \pm 1$
Truth (Hbb) Gen. (Hbb) Gen. kin (Hbb)		$egin{array}{c} 0.42 \pm 0.08 \ 0.8 \pm 0.2 \ 0.8 \pm 0.2 \ 0.8 \pm 0.2 \end{array}$	$\begin{array}{c} 0.5 \pm 0.1 \\ 0.7 \pm 0.2 \\ 0.6 \pm 0.1 \end{array}$	$\begin{vmatrix} 1.6 \pm 0.5 \\ 6 \pm 1 \\ 1.5 \pm 0.6 \end{vmatrix}$		$\begin{array}{c} 0.9 \pm 0.2 \\ 2.7 \pm 0.3 \\ 1.5 \pm 0.3 \end{array}$
Truth (Hcc) Gen. (Hcc) Gen. kin (Hcc)		$\begin{array}{c} 0.6 \pm 0.2 \\ 1.0 \pm 0.2 \\ 0.5 \pm 0.2 \end{array}$	$\begin{array}{c c} 0.6 \pm 0.2 \\ 0.6 \pm 0.2 \\ 0.6 \pm 0.1 \end{array}$	$\begin{vmatrix} 1.5 \pm 0.5 \\ 14.7 \pm 0.7 \\ 5.1 \pm 0.7 \end{vmatrix}$		$0.9 \pm 0.2 \\ 3.4 \pm 0.3 \\ 1.3 \pm 0.3$
Truth (Hgg) Gen. (Hgg) Gen. kin (Hgg)		$egin{array}{c} 0.5 \pm 0.1 \ 0.9 \pm 0.3 \ 0.5 \pm 0.2 \end{array}$	$ \begin{vmatrix} 0.44 \pm 0.09 \\ 0.5 \pm 0.2 \\ 0.4 \pm 0.1 \end{vmatrix} $	$\begin{vmatrix} 1.2 \pm 0.4 \\ 7.9 \pm 0.8 \\ 2.4 \pm 0.6 \end{vmatrix}$	$\begin{array}{c} 1.0 \pm 0.3 \\ 3.3 \pm 0.5 \\ 2.0 \pm 0.5 \end{array}$	$egin{array}{c} 0.7 \pm 0.3 \ 2.0 \pm 0.2 \ 0.8 \pm 0.3 \end{array}$
Truth (H4q) Gen. (H4q) Gen. kin (H4q)	$\begin{array}{c} 0.26 \pm 0.08 \\ 0.84 \pm 0.08 \\ 0.31 \pm 0.06 \end{array}$	$egin{array}{c} 0.4 \pm 0.1 \ 0.9 \pm 0.2 \ 0.6 \pm 0.1 \end{array}$	$\begin{array}{c c} 0.34 \pm 0.07 \\ 0.5 \pm 0.1 \\ 0 \pm 1 \end{array}$	$\begin{vmatrix} 1.1 \pm 0.3 \\ 9.0 \pm 0.8 \\ 2.9 \pm 0.7 \end{vmatrix}$	$\begin{array}{c} 0.9 \pm 0.2 \\ 10.3 \pm 0.6 \\ 4.0 \pm 0.4 \end{array}$	$egin{array}{c} 0.5 \pm 0.1 \ 1.12 \pm 0.09 \ 0.6 \pm 0.1 \end{array}$
Truth (Hqql) Gen. (Hqql) Gen. kin (Hqql)	$\begin{array}{c} 0.4 \pm 0.1 \\ 0.67 \pm 0.09 \\ 0.53 \pm 0.08 \end{array}$	$0.6 \pm 0.2 \\ 0.9 \pm 0.2 \\ 0.8 \pm 0.2$	$\begin{array}{c} 0.6 \pm 0.2 \\ 0.9 \pm 0.2 \\ 0.8 \pm 0.2 \end{array}$	$\begin{vmatrix} 1.5 \pm 0.7 \\ 5.2 \pm 0.7 \\ 2.9 \pm 0.7 \end{vmatrix}$	$\begin{array}{c} 1.5 \pm 0.4 \\ 19 \pm 1 \\ 12.5 \pm 0.8 \end{array}$	$egin{array}{c} 1.4 \pm 0.4 \\ 2.5 \pm 0.5 \\ 2.2 \pm 0.5 \end{array}$
Truth (Zqq) Gen. (Zqq) Gen. kin (Zqq)	$ \begin{vmatrix} 0.32 \pm 0.07 \\ 0.64 \pm 0.05 \\ 0.32 \pm 0.06 \end{vmatrix} $	$\begin{array}{c} 0.5 \pm 0.1 \\ 1.0 \pm 0.2 \\ 0.5 \pm 0.1 \end{array}$	$\begin{array}{c c} 0.5 \pm 0.1 \\ 0.6 \pm 0.2 \\ 0.6 \pm 0.1 \end{array}$	$\begin{vmatrix} 1.3 \pm 0.4 \\ 9.1 \pm 0.8 \\ 3 \pm 2 \end{vmatrix}$	$\begin{vmatrix} 1.0 \pm 0.3 \\ 1.3 \pm 0.2 \\ 3.2 \pm 0.5 \end{vmatrix}$	$egin{array}{c} 1.2 \pm 0.3 \\ 2.1 \pm 0.3 \\ 1.2 \pm 0.6 \end{array}$
Truth (Wqq) Gen. (Wqq) Gen. kin (Wqq)	$ \begin{vmatrix} 0.36 \pm 0.09 \\ 0.86 \pm 0.06 \\ 0.5 \pm 0.1 \end{vmatrix} $	$\begin{array}{c} 0.4 \pm 0.1 \\ 1.1 \pm 0.2 \\ 0.5 \pm 0.1 \end{array}$	$\begin{array}{c c} 0.5 \pm 0.1 \\ 0.6 \pm 0.2 \\ 0.5 \pm 0.1 \end{array}$	$ \begin{array}{c} 1.6 \pm 0.4 \\ 11 \pm 1 \\ 5 \pm 1 \end{array} $	$\begin{vmatrix} 1.0 \pm 0.2 \\ 2.0 \pm 0.3 \\ 2.6 \pm 0.5 \end{vmatrix}$	$egin{array}{c} 1.0 \pm 0.1 \ 2.9 \pm 0.5 \ 1.6 \pm 0.3 \end{array}$
Truth (Tbqq) Gen. (Tbqq) Gen. kin (Tbqq) Gen. allTop (Tbqq) Gen. kinTop (Tbqq)	$\begin{array}{c} 0.29 \pm 0.08 \\ 0.9 \pm 0.1 \\ 0.41 \pm 0.07 \\ 0.77 \pm 0.05 \\ 0.42 \pm 0.07 \end{array}$	$egin{array}{c} 0.5 \pm 0.2 \ 0.8 \pm 0.2 \ 0.5 \pm 0.1 \ 0 \pm 1 \ 0.7 \pm 0.2 \end{array}$	$egin{array}{c} 0.5 \pm 0.1 \ 0.6 \pm 0.2 \ 0 \pm 1 \ 0.6 \pm 0.1 \ 0.6 \pm 0.1 \ 0.6 \pm 0.2 \end{array}$	$\begin{array}{c} 1.7 \pm 0.4 \\ 7.9 \pm 0.5 \\ 3.6 \pm 0.7 \\ 11.3 \pm 0.5 \\ 4.8 \pm 0.7 \end{array}$	$\begin{array}{c} 1.7 \pm 0.5 \\ 35.4 \pm 0.8 \\ 13.0 \pm 0.7 \\ 22 \pm 1 \\ 11.1 \pm 0.9 \end{array}$	$egin{array}{c} 0.4 \pm 0.1 \ 0.7 \pm 0.1 \ 0.57 \pm 0.08 \ 1.07 \pm 0.08 \ 0.6 \pm 0.1 \end{array}$
Truth (Tbl) Gen. (Tbl) Gen. kin (Tbl)	$\begin{array}{c} 0.4 \pm 0.2 \\ 1.2 \pm 0.2 \\ 0.44 \pm 0.09 \end{array}$	$egin{array}{c} 0.48 \pm 0.09 \ 1.7 \pm 0.4 \ 0.6 \pm 0.1 \end{array}$	$\begin{array}{c} 0.7 \pm 0.2 \\ 1.6 \pm 0.3 \\ 1.0 \pm 0.2 \end{array}$	$\begin{vmatrix} 1.1 \pm 0.2 \\ 12.5 \pm 0.8 \\ 4.8 \pm 0.7 \end{vmatrix}$	$\begin{array}{c} 1.6 \pm 0.6 \\ 2.6 \pm 0.5 \\ 2.2 \pm 0.6 \end{array}$	$egin{array}{c} 1.6 \pm 0.5 \ 5.8 \pm 0.5 \ 2.3 \pm 0.7 \end{array}$

17

Training and inference

Fig. 1: Schematic overview of the EPiC-JeDi and EPiC-FM training (left) and generation (right) pipeline.

Image from Buhmann et al. (2023) "EPiC-ly Fast Particle Cloud Generation with Flow-Matching and Diffusion"

Model architecture sketch

Fig. 2: Model schema of the *EPiC Network* generator architecture used in both EPiC-JeDi and EPiC-FM. Each multi-layer perceptron (MLP) is a two-layer neural network with LeakyReLU activation. The pooling operation is a concatenation of both average and summation pooling.

Image from Buhmann et al. (2023) "EPiC-ly Fast Particle Cloud Generation with Flow-Matching and Diffusion"

