SQUIRELS

Sascha Diefenbacher, Vinicius Mikuni, Benjamin Nachman ML4jets, Hamburg 2023

S. Diefenbacher

BERKELEY LAB

SQuIRELS

11.06.2023

1

Refinement

- Fundamentally: Refinement = mapping arbitrary distribution to other arbitrary distribution Simulation refinement

 - Unfolding

 - Background estimation Anomaly detection
 - Many more...

S. Diefenbacher

Generative Models

First step:

- Standard generative models:
- Map random noise to new data

Latent Space

New Data

• VAE:

• VAE:

- Latent regularization needs latent space with tractable KLD
 - Starting distribution cannot be arbitrary Needs tractable base distribution

• VAE:

• NF:

Needs tractable base distribution

- VAE:
- NF:

- Two-Flow trick possible

- Needs tractable base distribution
- •NLL calculation needs tractable base

Requires learning full generative model

• VAE:

• NF:

• Diffusion:

Needs tractable base distribution

NLL calculation needs tractable base

- VAE:
- NF:

- NLL calculation needs tractable base

 - Needs Gaussian base distribution

Needs tractable base distribution

Diffusion:
 Oiffusion process leads to Gaussian

- Needs tractable base distribution • VAE: NLL calculation needs tractable base • NF: Diffusion:
 Needs Gaussian base distribution
- GAN:

- VAE:
- NF:
- GAN:

- Diffusion:
 Needs Gaussian base distribution
 - No point in loss calculation depends on starting distribution
 - Can have arbitrate starting distribution

- Needs tractable base distribution
- NLL calculation needs tractable base

- VAE:
- NF:
- GAN:

- Diffusion:
 Needs Gaussian base distribution
 - Can have arbitrate starting distribution
 - •Low performance (compared to SotA)
 - Difficult training

- Needs tractable base distribution
- NLL calculation needs tractable base

- VAE:
- NF:
- GAN:

- Needs tractable base distribution
- NLL calculation needs tractable base
- Diffusion:
 Needs Gaussian base distribution
 - Can have arbitrate starting distribution
 - Low performance/difficult training

- VAE:
- NF:
- GAN:

New model

- Needs tractable base distribution
- NLL calculation needs tractable base
- Diffusion:
 Needs Gaussian base distribution
 - Can have arbitrate starting distribution
 - Low performance/difficult training

Schrödinger Bridges

Based on optimal transport problem

Detector 1

- What is the best path between the two observations
- Boundary condition: x(t = 0)

$$= x_0, x(t = 1) = x_1$$

- Usually: f(x,t) diffuses to normal distribution
- Modify f(x,t) to map between start and target distribution, ensure boundary conditions are matched

SQuIRELS

Interpolation Interpolation Interpolation Interpolation Neural Net 1 Neural Net 1 Neural Net 1 Neural Net 1 t=2t=3t=1t=4

Schrödinger Bridges **Approach 1: Stochastic interpolation** Apply Train t=0Define random shift that ends at boundary conditions

- Requires pairs of data points

Guan-Horng Liu et. al. I2SB: Image-to-Image Schrödinger Bridge, <u>2302.05872</u>

SQuIRELS

Schrödinger Bridges

Approach 2: 2 Models with Iterative Fitting

- Train NN 1 from start to target distribution
- Train NN 2 to undo NN 1
- Reverse and repeat
- No paired data required

Valentin De Bortoli et. al. **Diffusion Schrödinger Bridge with Applications to Score-Based** Generative Modeling, 2106.01357

S. Diefenbacher

11.06.2023

SQuIRELS

Refinement

• Fundamentally: Refinement = mapping arbitrary distribution to other arbitrary distribution

Simulation refinement

Background estimation

Diefenbacher et. al. Refining Fast **Calorimeter Simulations with a** Schrödinger Bridge, 2308.12339

SQuIRELS

S. Diefenbacher

SQUIRELS

Schrödinger bridge Quality Improvement via **Refinement of Existing Lightweight Simulations** • 2308.12339

SQuIRELS

Data

- 10x10 homogeneous crystal calorimeter
- Simulate electron showers for particle energies 10-100 GeV
- Starting distribution: GFlash fast simulation
- Target distribution: Geant4 full simulation

S. Diefenbacher

Energy sum

S. Diefenbacher

SQuIRELS

Energy Spectrum

Number of Hits

S. Diefenbacher

Timing Results Simulator Geant4 404.8 ± 8.5 GFLASH 8.5 ± 0.4 SQuIRELS (refine) $7.21{\pm}0.04$ SQuIRELS (full) 15.7 ± 0.4

CPU [ms/shower] GPU [ms/shower] 0.0522 ± 0.0002 8.5 ± 0.4

Refinement

- Fundamentally: Refinement = mapping arbitrary distribution to other arbitrary distribution
 - Simulation refinement
 - Background estimation

Diefenbacher et. al. **Improving Generative Model-based Unfolding** with Schrödinger Bridges, 2308.12351

11.06.2023

SQuIRELS

Herwig → Pythia (Low Stat.)

	-		-		
	Model	$EMD(\times 10)/Triangular Discriminator(\times 10^3)$			
		OmniFold Step 1	CINN	SBUNFOLD	
High Stat:	Jet mass	$6.1{\pm}0.1/1.5$	$10.1 \pm 1.2/2.4$	$9.0 \pm 0.1/3.1$	
	Jet Width	$0.06 \pm 0.001/1.1$	$0.05 \pm 0.003 / 0.7$	$0.02{\pm}0.001/0.2$	
	N	$1.7{\pm}0.1/0.2$	$6.1 \pm 4.0 / 0.2$	$3.0\pm0.1/0.6$	
	$\log \rho$	$1.35 \pm 0.03 / 1.1$	$3.1 \pm 2.1/0.8$	$0.4{\pm}0.1/0.7$	
	z_g	$0.086 \pm 0.001 / 1.2$	$0.3 \pm 0.1/12.7$	$0.049 \pm 0.001/3.5$	
	$ au_{21}$	$0.23 \pm 0.02/4.6$	$0.7 \pm 0.4/3.5$	$0.12{\pm}0.02/1.4$	
			•	,	
	Model	EMD(×10)/Triangular Discriminator(×10 ³)			
		OmniFold Step 1	cINN	SBUNFOLD	
Low Stat:	Jet mass	8.7±1.8/13.6	$9.2 \pm 3.0/8.4$	$7.7{\pm}2.5/6.9$	
	Jet Width	$0.14 \pm 0.02/18$	$0.07 \pm 0.02 / 5.7$	$0.05{\pm}0.02/4.6$	
	Ν	$12\pm 3/10.9$	$5.4{\pm}1.3/3.8$	5.8 $\pm 1.6/3.7$	
	$\log ho$	$4.0\pm0.8/11$	$1.6 \pm 0.5 / 6.2$	$1.2{\pm}0.3/4.4$	
	z_g	$0.08 \pm 0.02 / 1.5$	$0.08 \pm 0.03 / 7.2$	0.06±0.01/7.1	
	$ au_{21}$	$0.4 \pm 0.07/16$	$0.2 \pm 0.05/12$	$0.1 \pm 0.04/8$	

Herwig -> Pythia

11.06.2023

SQuIRELS

Conclusion

- Schrödinger Bridges promising for any refinement
- Calorimeter refinement
 - Faster than full simulation
 - More accurate than fast sim.
- Unfolding
 - Beats state of the art unfolding methods

Schrödinger Bridges

• Start from initial distribution $p_0(x_0) = p_{\alpha}$

$$p(x_0, N) = p_0(x_0) \prod_{k=0}^{N-1} p_{k+1|k}(x_k)$$

- Apply transition kernels $p_{k+1|k}$
- This defines path π
- Now demand that path fulfills boundary condition: $\pi^* = \operatorname{argmin} \{ \operatorname{KL}(\pi | p) : \pi_0 = p_\alpha, \pi_N = p_\beta \}$

 $_{k+1}|x_{k})$

Schrödinger Bridges Can be approximated using iterative fitting procedure:

- - $\pi^{2n+1} = \arg\min\left\{\mathrm{KL}(\pi|\pi^{2n})\right\}$
 - $\pi^{2n+2} = \arg\min\left\{\mathrm{KL}(\pi|\pi^{2n})\right\}$
- Gradually brings endpoints of path closer to target distributions For generative application, distr. unknown, KLD hard to calculate Instead: define Gaussian transition kernels in both directions

$$p_{k+1|k}^{n}(x_{k+1}|x_{k}) = \mathcal{N}(x_{k+1}; F_{k}^{n}(x_{k}), 2\gamma_{k+1})$$
$$q_{k|k+1}^{n}(x_{k}|x_{k+1}) = \mathcal{N}(x_{k}; B_{k+1}^{n}(x_{k+1}), 2\gamma_{k+1})$$

$${n \choose i} : \pi_N = p_\beta$$

$${n+1 \choose i} : \pi_0 = p_\alpha$$

Schrödinger Bridges

- Instead: define Gaussian transition kernels in both directions $p_{k+1|k}^{n}(x_{k+1}|x_{k}) = \mathcal{N}(x_{k+1}; F_{k}^{n}(x_{k}), 2\gamma_{k+1})$ $q_{k|k+1}^n(x_k|x_{k+1}) = \mathcal{N}(x_k; B_{k+1}^n(x_{k+1}), 2\gamma_{k+1})$ • New recursive updating method: $B_{k+1}^{n} = \operatorname{argmin}_{B} \mathbb{E} \left\| B(x_{k+1}) - x_{k+1} - F_{k}^{n}(x_{k}) + F_{k}^{n}(x_{k+1}) \right\|^{2}$ $F_k^{n+1} = \operatorname{argmin}_F \mathbb{E} \left\| F(x_k) - x_k - B_{k+1}^n(x_{k+1}) + B_{k+1}^n(x_k) \right\|^2$ • Approximate F and B as neural networks, and define forward steps: $x_{k+1} = F_{\sigma}^{n}(k, x_{k}) + \sqrt{2\gamma_{k+1}}Z,$ $x_{k-1} = B^n_\theta(k, x_k) + \sqrt{2\gamma_k}\tilde{Z},$
- Alternatingly fix F/B and update B/F

Generative Fast Sim

Standard generative approach: Map random noise to new data

High Dim. Data

SQuIRELS

Classical Fast Sim

- Build reference shower set using full sim
- Define parametrized functions on full sim showers
- Quickly sample from parametrized model

S. Diefenbacher

SQuIRELS Setup

Fast Simulation

Full Simulation

SQuIRELS Setup

Fast Simulation

S. Diefenbacher

SQuIRELS Setup

Fast Simulation

S. Diefenbacher

Full Simulation

Results

Observalbe	EMD		
	Geant4	GFLASH	SQuIRELS
$E_{sum} 20 ~GeV$	0.0003(1)	0.1184(2)	0.0061(2)
$E_{sum} 50 ~GeV$	0.0009(2)	0.2599(6)	0.0147(4)
$E_{sum} 80 ~GeV$	0.0016(5)	0.3906(8)	0.0288(8)
$E_{spec} 20 \text{ GeV}$	0.002(1)	0.018(2)	0.003(2)
$E_{spec} 50 GeV$	0.006(4)	0.034(3)	0.007(4)
$E_{spec} 80 ~GeV$	0.009(6)	0.051(6)	0.011(6)
$N_{hit} 20 ~GeV$	0.015(4)	11.37(1)	1.32(1)
$N_{hit} 50 ~GeV$	0.015(5)	11.84(1)	0.085(7)
$N_{hit} 80 ~GeV$	0.013(4)	11.06(1)	1.45(1)
$E_{max} 20 ~GeV$	0.0014(5)	0.3379(2)	0.0490(9)
$E_{max} 50 ~GeV$	0.0021(7)	0.4342(4)	0.083(1)
$E_{max} 80 ~GeV$	0.0027(9)	0.4757(5)	0.106(2)
$\text{profile}_{x} 20 \text{ GeV}$	1.954(2)	1.967(2)	1.953(2)
$\text{profile}_{x} 50 \text{ GeV}$	1.954(2)	1.966(2)	1.953(2)
$\text{profile}_{x} 80 \text{ GeV}$	1.954(2)	1.965(2)	1.953(2)
$\text{profile}_{y} 20 \text{ GeV}$	1.953(2)	1.966(2)	1.953(2)
$profile_v 50 \text{ GeV}$	1.954(2)	1.966(2)	1.953(2)
profile_{y} 80 GeV	1.954(2)	1.966(2)	1.953(2)

S. Diefenbacher

SQuIRELS

Profiles

S. Diefenbacher

11.06.2023

SQuIRELS

11.06.2023

SQuIRELS

Pythia → Pythia (vs Diffusion)

Model	EMD(×10)	/]
	FPCD	
Jet mass	$0.74 \pm 0.08 / 0.19$	
Jet Width	$0.0087 \pm 0.0006 / 0.9$	0.
Ν	$0.81 \pm 0.06 / 0.1$	
$\log ho$	$0.34{\pm}0.01/0.77$	
z_g	$0.035 \pm 0.007 / 12.4$	0.
$ au_{21}$	$0.024{\pm}0.002/0.3$	

S. Diefenbacher

Triangular Discriminator $(\times 10^3)$
SBUNFOLDCINNSBUNFOLD $1.4 \pm 0.2/0.29$ $0.70 \pm 0.06/0.30$ $.013 \pm 0.002/0.25$ $0.0029 \pm 0.0005/0.04$ $2.3 \pm 0.8/0.09$ $0.57 \pm 0.04/0.9$ $1.1 \pm 0.3/0.64$ $0.27 \pm 0.01/0.68$ $.095 \pm 0.003/10.9$ $0.009 \pm 0.001/3.1$ $0.2 \pm 0.1/0.6$ $0.016 \pm 0.001/0.2$

