

<u>DeGeSim – Pileup Modelling using Al</u> <u>10-11-23</u>

Stephen Jiggins - DESY

HELMHOLTZAI ARTIFICIAL INTELLIGENCE COOPERATION UNIT

Problem:

Problem:

Problem:

Problem:

Problem:

Project Aim:

Generative modelling of pileup interactions using zero-bias data instead of MC simulations using ML image synthesis techniques

DeGeSim:

Helmholtz AI funded project for simulating detector simulations in proton-proton colliders using deep generative ML models as joint project with CMS + Juelich + TRIUMF:

HELMHOLTZAI ARTIFICIAL INTELLIGENCE

ATLAS (DESY)

CMS (DESY)

Juelich

TRIUMF

10/11/23

Project Aim:

Generative modelling of pileup interactions using zero-bias data instead of MC simulations using ML image synthesis techniques

Monte Carlo (MC)

EPOS+Pythia8 simulated soft-QCD

Zero-Bias Data

DeGeSim:

Helmholtz AI funded project for simulating detector simulations in proton-proton colliders using deep generative ML models as joint project with CMS + Juelich + TRIUMF:

HELMHOLTZAI ARTIFICIAL INTELLIGENCE

ATLAS (DESY)

Project Aim:

Generative modelling of pileup interactions using zero-bias data instead of MC simulations using ML image synthesis techniques

Monte Carlo (MC)

EPOS+Pythia8 simulated soft-QCD

Zero-Bias Data

DeGeSim:

Helmholtz AI funded project for simulating detector simulations in proton-proton colliders using deep generative ML models as joint project with CMS + Juelich + TRIUMF:

HELMHOLTZAI ARTIFICIAL INTELLIGENCE

ATLAS (DESY)

Boundary Conditions:

In terms of the simulation chain the data domain is limited to the simulated ATLAS tracker + calorimeters + MS

og(Energy) [MeV]

Project Aim:

Generative modelling of pileup interactions using zero-bias data instead of MC simulations using ML image synthesis techniques

Monte Carlo (MC)

EPOS+Pythia8 simulated soft-QCD

Zero-Bias Data

DeGeSim:

Helmholtz AI funded project for simulating detector simulations in proton-proton colliders using deep generative ML models as joint project with CMS + Juelich + TRIUMF:

HELMHOLTZAI ARTIFICIAL INTELLIGENCE

ATLAS (DESY)

Boundary Conditions:

In terms of the simulation chain the data domain is limited to the simulated ATLAS tracker + calorimeters + MS

 $f: X_{\rm MC} \to X_{\rm D}$

10/11/23

Stephen Jiggins

Project Aim:

Generative modelling of pileup interactions using zero-bias data instead of MC simulations using ML image synthesis techniques

Which model?

DeGeSim:

Helmholtz AI funded project for simulating detector simulations in proton-proton colliders using deep generative ML models as joint project with CMS + Juelich + TRIUMF:

HELMHOLTZAI | ARTIFICIAL INTELLIGENCE COOPERATION UNIT

ATLAS (DESY)

Fully Generative

Sample from a known function $P_s(\overline{x'} | \overline{\theta})$ to get X'and then find a transformation from X' to X:

Reverse Denoising Process

Reverse Denoising Process

Stephen Jiggins

Self-Conditioned DDPM

switch class label $(0 \rightarrow 1)$ and denoise.

<u>Key</u>

→ **Top Pane:** Gaussian emulated (Gen.) sampling with forward diffused *real data*

JetNet: Top -vs- W jets

→ **Middle Pane:** Time evolution of emulated (generative) data $p_{\theta}(x_{t-1} | y, x_t)$ for time each 10th time step:

> Black contours = equal probability Red line = random event path

- → **Bottom Pane:** Real data vs diffusion emulated data from a guassian prior (top pane).
- → **Metrics:** Wasserstein distance in 1D projection

DeGeSim – JetNet preliminary

$$r(x, t_{release}) = \frac{s(x, t_{release})}{1 - s(x, t_{release})} \approx 1$$

$$r(x, t_{release}) = \frac{s(x, t_{release})}{1 - s(x, t_{release})} \approx 1$$

$$r(x, t_{release}) = \frac{s(x, t_{release})}{1 - s(x, t_{release})} \approx 1$$

$$r(x, t_{release}) = \frac{s(x, t_{release})}{1 - s(x, t_{release})} \approx 1$$

Summary

- → **Goal:** Emulate calorimeter *images* of pileup (minimum/zero bias) seeded from MC based simulations
- → **Status:** Partial diffusion using self-conditioning and classifier free guidance to preserve class-specific features prior to image denoising

 \rightarrow Image-to-image (I2I) translation using partial information loss

- → **Problems:** Null value sparsity injection into calorimeter images:
 - \rightarrow CNNs struggle with noisy images and null-value injection
 - \rightarrow Point clouds introduce cell \leftrightarrow point assignment ambiguity
 - \rightarrow Sparse convolutional operations

→ **Further work** will include:

- → Cast discrete state spaces into continuous state space for diffusion (Analog Bits)
- → **Cross-domain** conditioning to enhance domain translation duing diffusion

Backup

Neural Network Architecture

DDPMs - Recipe

\rightarrow Noise Scheduler:

Cosine β -scheduling noise injection:

$$\beta_t = 1 - \frac{\overline{\alpha_t}}{\overline{\alpha_{t-1}}} \qquad \overline{\alpha_t} = f(t)/f(0) \qquad f(t) = \cos\left(\frac{(t/T+s)\pi}{2.(1+s)}\right)$$

 \rightarrow Denoising Score Matching

 $L(\theta) = \mathbb{E}_{t,x_0,\epsilon}[\left|\epsilon - \epsilon_{\theta}(x_t(x_0,\epsilon),t)^2\right|]$

 \rightarrow Density Ratio Estimating Classifer

 $L_{DRE} = \sum \left[p_c(t, x_0) \log \left(\widehat{p}_c(t, x_0) \right) \right]$

\rightarrow Noise Scheduler:

Cosine β *-scheduling noise injection:*

$$\beta_t = 1 - \frac{\overline{\alpha_t}}{\overline{\alpha_{t-1}}} \qquad \overline{\alpha_t} = f(t)/f(0) \qquad f(t) = \cos\left(\frac{(t/T+s)\pi}{2.(1+s)}\right)$$

 \rightarrow Denoising Score Matching

$$L(\theta) = \mathbb{E}_{t,x_0,\epsilon}[\left|\epsilon - \epsilon_{\theta}(x_t(x_0,\epsilon),t)^2\right|]$$

 \rightarrow Density Ratio Estimating Classifer

 $L_{DRE} = \sum \left[p_c(t, x_0) \log \left(\widehat{p}_c(t, x_0) \right) \right]$

 \rightarrow The *origin* conditional probability is tractable:

$$q(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0) = q(\mathbf{x}_t|\mathbf{x}_{t-1},\mathbf{x}_0) rac{q(\mathbf{x}_{t-1}|\mathbf{x}_0)}{q(\mathbf{x}_t|\mathbf{x}_0)}$$

$$ightarrow$$
 Network needs to learn the reverse process: $p_{ heta}(\mathbf{x}_{0:T}) = p(\mathbf{x}_T) \prod_{t=1}^T p_{ heta}(\mathbf{x}_{t-1} | \mathbf{x}_t)$

 \rightarrow Lower variational bound objective:

$$L_{ ext{VLB}} = \mathbb{E}_{q(\mathbf{x}_{0:T})} \Big[\log rac{q(\mathbf{x}_{1:T} | \mathbf{x}_0)}{p_{ heta}(\mathbf{x}_{0:T})} \Big]$$

 \rightarrow DSM needs to learn the term:

$$L_{ ext{VLB}} = L_T + L_{T-1} + \dots + L_0$$

 $-\sum_{t=2}^T \underbrace{D_{ ext{KL}}(q(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0) \parallel p_{ heta}(\mathbf{x}_{t-1}|\mathbf{x}_t))}_{L_{t-1}}$

DDPMs - Recipe

\rightarrow Noise Scheduler:

Cosine β -scheduling noise injection:

$$\beta_t = 1 - \frac{\overline{\alpha_t}}{\overline{\alpha_{t-1}}} \qquad \overline{\alpha_t} = f(t)/f(0) \qquad f(t) = \cos\left(\frac{(t/T+s)\pi}{2.(1+s)}\right)$$

- \rightarrow Denoising Score Matching
 - $L(\theta) = \mathbb{E}_{t,x_0,\epsilon}[\left|\epsilon \epsilon_{\theta}(x_t(x_0,\epsilon),t)^2\right|]$
- \rightarrow Density Ratio Estimating Classifer

 $L_{DRE} = \sum \left[p_c(t, x_0) \log \left(\widehat{p}_c(t, x_0) \right) \right]$

- $\rightarrow \text{Conditional Embedding}$ $L(\theta) = \mathbb{E}_{t,x_0,\epsilon,\mathbf{y}}[\left|\epsilon \epsilon_{\theta}(x_t(x_0,\epsilon),\mathbf{y},t)^2\right|]$
- \rightarrow Classifier Free Guidance

$$\overline{\epsilon_{\theta}}(x_t, \mathbf{y}, t) = (w+1) \epsilon_{\theta}(x_t, \mathbf{y}, t) - w \cdot \epsilon_{\theta}(x_t, t)$$

 \rightarrow Conditional dependency can be integrated:

$$q(\mathbf{x}_{t-1}|\mathbf{x}_{t}, \mathbf{x}_{0,y}) = q(\mathbf{x}_{t}|\mathbf{x}_{t-1}, \mathbf{x}_{0,y}) \cdot \frac{q(\mathbf{x}_{t-1}|\mathbf{x}_{0,y})}{q(\mathbf{x}_{t}|\mathbf{x}_{0,y})}$$
$$p_{\theta}(\mathbf{x}_{0:T}|y) = p_{\theta}(\mathbf{x}_{T}) \prod_{t=1}^{T} p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t}, y)$$

 \rightarrow Score estimation naturally extends with this conditionality:

$$\nabla_{x_t}^w \log(p_\theta(x_t|y)) = (1 - w) \nabla_{x_t} \log(p_\theta(x_t)) + w \nabla_{x_t} \log(p_\theta(x_t|y)) - (1 - w) \nabla_$$

→ Guidance scalar (w) used to control conditional ↔ unconditionally interpolation of score/noise estimators:

$$\overline{\epsilon}(x_t,t,y) = w \epsilon_{\theta}(x_t,t,y) - (1-w) \epsilon_{\theta}(x_t,t) \blacktriangleleft$$

DDPMs - Recipe

\rightarrow Noise Scheduler:

Cosine β *-scheduling noise injection:*

$$\beta_t = 1 - \frac{\overline{\alpha_t}}{\overline{\alpha_{t-1}}} \qquad \overline{\alpha_t} = f(t) / f(0) \qquad f(t) = \cos\left(\frac{(t/T+s)\pi}{2.(1+s)}\right)$$

 \rightarrow Denoising Score Matching

 $L(\theta) = \mathbb{E}_{t,x_0,\epsilon}[\left|\epsilon - \epsilon_{\theta}(x_t(x_0,\epsilon),t)^2\right|]$

 \rightarrow Density Ratio Estimating Classifer

$$L_{DRE} = \sum \left[p_c(t, x_0) \log \left(\widehat{p_c}(t, x_0) \right) \right]$$

 $\rightarrow \text{Conditional Embedding}$ $L(\theta) = \mathbb{E}_{t,x_{1},\epsilon,\mathbf{y}}[\left|\epsilon - \epsilon_{\theta}(x_{t}(x_{0},\epsilon),\mathbf{y},t)^{2}\right|]$

 $\overline{\epsilon_{\theta}}(x_{t}, \mathbf{y}, t) = (w+1) \epsilon_{\theta}(x_{t}, \mathbf{y}, t) - w. \epsilon_{\theta}(x_{t}, t)$

 \rightarrow Self-Conditioning

 $L(\theta) = \mathbb{E}_{t, x_0, \hat{x}_0, \epsilon, y} \left[\left| \epsilon - \epsilon_{\theta}(x_t(x_0, \epsilon), y, t, \hat{x}_0)^2 \right| \right]$

 \rightarrow Self-conditioned dependency can be integrated:

$$p_{\theta}(\mathbf{x}_{0:T}|y,\widetilde{x}_{0}) = p_{\theta}(\mathbf{x}_{T}) \prod_{t=1}^{T} p_{\theta}(\mathbf{x}_{t-1}|x_{t}, y, \widetilde{x}_{0})$$

 \rightarrow Provided that there is a stop gradient on the estimate of the original image $\widetilde{x_{o}}$:

 $\nabla_{x_t}^w \log(p_{\theta}(x_t|y,\widetilde{x}_0)) = (1 - w) \nabla_{x_t} \log(p_{\theta}(x_t)) + w \nabla_{x_t} \log(p_{\theta}(x_t|y,\widetilde{x}_0))$

 \rightarrow Scalar based guidance becomes:

$$\overline{\epsilon}(x_t, t, y) = w \,\epsilon_{\theta}(x_t, t, y, \widetilde{x}_0) - (1 - w) \,\epsilon_{\theta}(x_t, t)$$

$$45$$

Delphes Pile-up Simulation

Problem:

Denoise Score Matching Neural Network

DDPM Model Architecture

Denosing Neural Model

\rightarrow Image Reco. Encoder + Decoder:

Using a UNet based architecture with:

- Cross-Attention
- Global Self-Attention
- Deep Residual Connections

Using patch + pixel based reconstruction loss:

\rightarrow Denoising Latent Model:

Using a residual block based neural network:

- Sinusoidal embedding of class+time
- Short + Long residual connections
- Dense (non-)-linear MLP blocks

Using noise score matching criteria:

 $L(\theta) = \mathbb{E}_{t, x_0, \widehat{x}_0, \epsilon, y}[\left|\epsilon - \epsilon_{\theta}(x_t(x_0, \epsilon), y, t, \widehat{x}_0)^2\right|]$

Latent Diffusion Residual Network

Input Calorimeter

Latent Diffusion Residual Network

PDF Heat Map – Time Profile w/ self-conditioning

DeGeSim – JetNet preliminary

Cross Domain Attention

Unpaired Domain Adaptation DDPM - 121

Unpaired Domain Adaptation DDPM - 121

