Non-resonant Anomaly Detection

with background extrapolation

Kehang Bai, Radha Mastandrea, Ben Nachman ML4Jets Workshop 11/09/2023

Current landscape of Anomaly Detection

Requirements for complete Anomaly Detection

Successful background estimation

Sensitive to signal

Many proposals and all data results

Background interpolation from sideband

resonant signal

Examples: SALAD, CATHODE, FETA, CURTAINs, ...

See <u>Radha's talk</u> for <u>the interplay of resonant AD methods</u>.

This proposal

This proposal

The idea

→ Why don't we just extrapolate with existing methods?

The idea

Non-resonant signals

Case 1: large missing energy in the final states of a resonant production. Example here: semi-visible jets from Z'.

Case 2: off-shell effects from heavy particles. Example: modifications to SMEFT coefficients, but not explored here.

First, let's take a look at a toy example

Context variables m1 and m2, used to define SR & CR.

A feature variable x.

Test SALAD-only, CATHODE+SALAD, and FETA+SALAD.

Anomaly detection methods

• Reweighting (SALAD)

Reweighted MC vs data for the toy background

* This plot is used for illustration purpose only, not the final result.

Anomaly detection methods

Density estimation (CATHODE & FETA + SALAD)

True vs predicted toy background

* This plot is used for illustration purpose only, not the final result.

Results from the toy example

AD performance over increasing signal injections

Not yet thoroughly optimized, but early indication suggest the hybrid methods are better.

signal-to-background ratio

Physics case

0

500 1000 1500 2000 2500 3000 3500 4000

m_{ii} (GeV)

0.0

0.2

0.4

Leading jet τ_2/τ_1

0.6

0.8 1.0

0.0

0.2

0.4

Sub-leading jet τ_2/τ_1

0.6

0.8 1.0

0.0

0.2

0.4

Leading jet τ_3/τ_2

0.6

0.8 1.0

0.0

0.2

0.4

Sub-leading jet τ_3/τ_2

0.6 0.8

1.0

CATHODE + SALAD hybrid

Kehang Bai

CATHODE + SALAD hybrid

Very preliminarily performance plots, taken from one training

Outlook

- This is the first case of non-resonant AD using extrapolation!
- There are many interesting problems associated with extrapolation that are worth exploring in the future.
- Stay tuned for the full results!

Thank you!

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of High Energy Physics program under Award Number DE-SC0020244.

SR definition in this example

SR defined to be: HT > 600 GeV AND MET > 75 GeV

