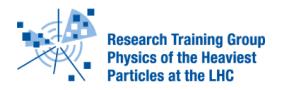
Institute for Theoretical Particle Physics and Cosmology

Learning the language of QCD jets with transformers



Alexander Mück RWTH Aachen University

together with

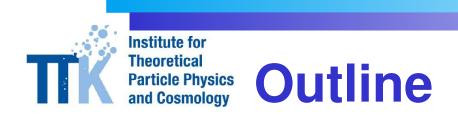
Thorben Finke, Michael Krämer, Jan Tönshoff

based on JHEP 06 (2023) 184, 2303.07364

ML4Jets2023

DESY, Hamburg, November 7, 2023

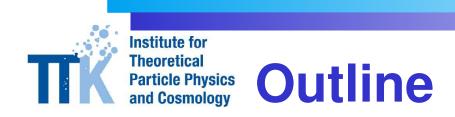
Learning the language of QCD jets with transformers - Alexander Mück - p.1/10



Learning the language of QCD jets with transformers

Data

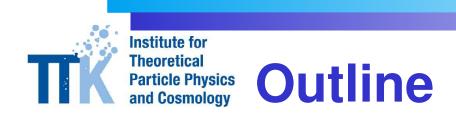
- QCD and top jets
- Turning particle and jets into words and sentences



Learning the language of QCD jets with transformers

Data

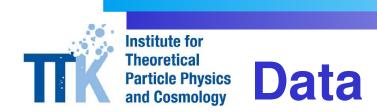
- QCD and top jets
- Turning particle and jets into words and sentences
- Density estimation
 - on low level data
 - using transformers as in NLP



Learning the language of QCD jets with transformers

Data

- QCD and top jets
- Turning particle and jets into words and sentences
- Density estimation
 - on low level data
 - using transformers as in NLP
- Quality assessment
 - use transformer as generative model
 - classifier tests

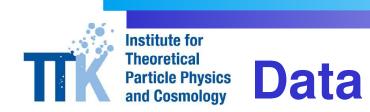


standard benchmark data set:

QCD and top jets: "Top Quark Tagging Reference Dataset"

https://zenodo.org/records/2603256

- 600k jets each
- $p_T \in [550, 650]$ GeV \rightarrow boosted top jets
- up to 200 constituent four-momenta \Rightarrow low-level data



standard benchmark data set:

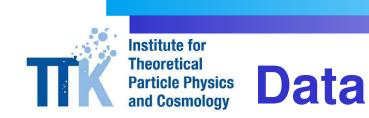
QCD and top jets: "Top Quark Tagging Reference Dataset"

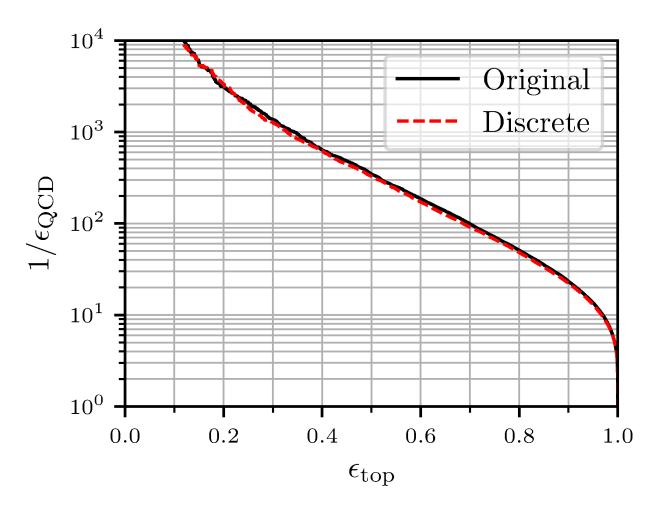
https://zenodo.org/records/2603256

- 600k jets each
- $p_T \in [550, 650]$ GeV \rightarrow boosted top jets
- up to 200 constituent four-momenta \Rightarrow low-level data

special preprocessing:

- discretize constituent kinematics by binning: $\hat{p}_T \in [0, 40], \quad \Delta \hat{\eta} \in [0, 30], \quad \Delta \hat{\phi} \in [0, 30]$
- $\Rightarrow \sim 40$ k different constituents \Leftrightarrow words in our language
- jets \Leftrightarrow sentences in our language
- loss of information?





 \Rightarrow almost no information loss for top tagging with ParticleNet

Learning the language of QCD jets with transformers – Alexander Mück – p.4/10

autoregressive approach:

$$p(\vec{x}) = p(\vec{x}_1)p(\vec{x}_2|\vec{x}_1)\dots p(\vec{x}_n|\vec{x}_1\dots\vec{x}_{n-1})$$

(see also JUNIPR by Andreassen et al., 1804.09720)

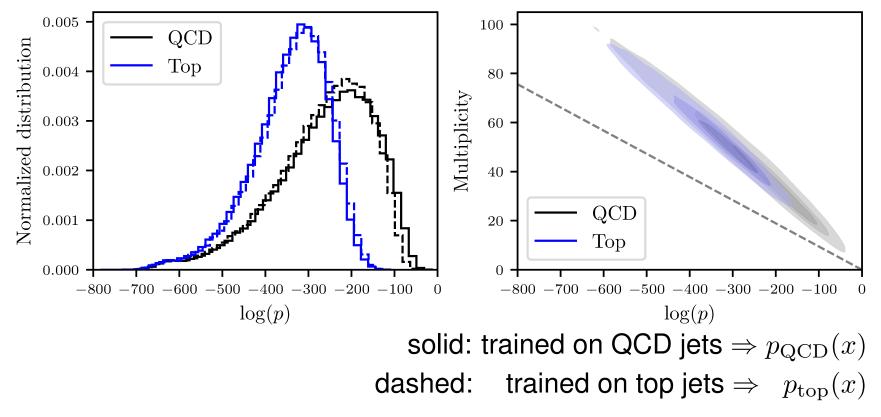
- standard transformer architecture as in NLP (see also Trade by Fakoor et al., 2004.02441)
- simple grammar: order constituents by p_T

(more physics inspired grammar in 1804.09720)

- Ioss function: categorical cross entropy between predicted and actual next particle/word
- jet multiplicity: predict stop token to terminate jet

 \Rightarrow variable multiplicity

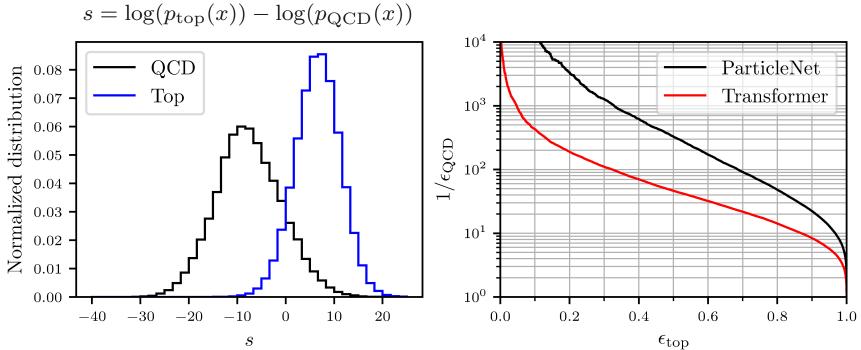
• probability for QCD and top jets:



- dominated by particle multiplicity
- indeed depends on specific training data

Learning the language of QCD jets with transformers - Alexander Mück - p.6/10

• Use density ratio as classifier score:



density provides discrimination power

- room for improvement
- strong overfitting observed

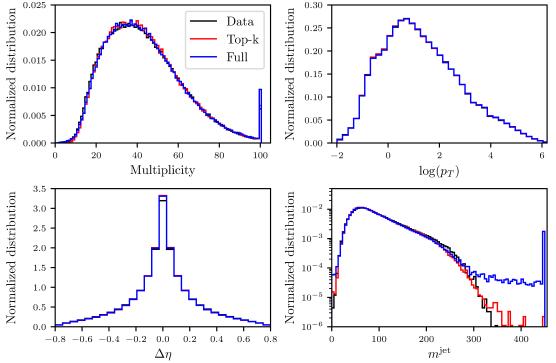
(for diffusion based results see 2306.03933, Vinicius' talk today at 14.15h)

Learning the language of QCD jets with transformers - Alexander Mück - p.7/10

Quality assessment

• Transformer as generative model: draw jets from $p(\vec{x})$

(see also 2305.10475, Jonas' talk today at 14.30h)



good agreement for 1D distributions

Institute for Theoretical

Particle Physics and Cosmology

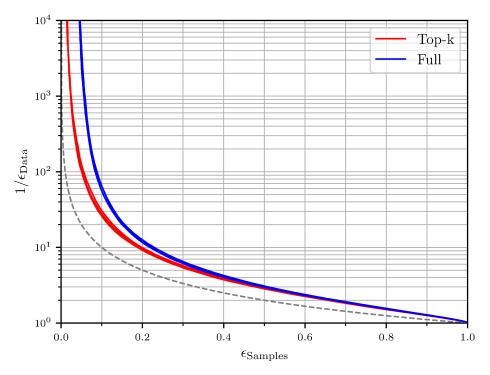
- multiplicity extrapolation works well (trained only with 50 consituents)
- top-k sampling to suppress low probability bins

(sample from k=5000 particles with highest probability)

Learning the language of QCD jets with transformers - Alexander Mück - p.8/ 10

TTA Institute for Theoretical Particle Physics and Cosmology Quality assessment

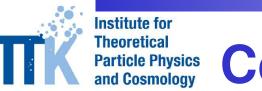
• Transformer as generative model: draw jets from $p(\vec{x})$ \Rightarrow use classifier to discriminate samples from data (see also 2305.16774, Luigi's talk Thu 11.45h)



• poor classification \Rightarrow good sampling \Rightarrow good density estimate

• Top-k sampling \Rightarrow fewer poor samples

Learning the language of QCD jets with transformers - Alexander Mück - p.9/10



Particle Physics and Cosmology Conclusion

Density estimation for low-level jet data

- following Natural Language Processing
- works for flexible number of constituents

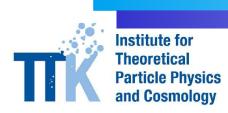
Promising results

- the transformer can speak QCD with a slight accent
- use classifier to assess quality

Outlook

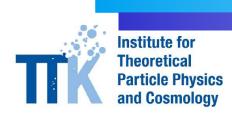
- improvements on larger datasets expected
- use in the context of Anode and Cathode (see also 2310.06897, talk by Cedric et al. Wed 17.15h)
- general pretraining (see also talk by Matthew)

Learning the language of QCD jets with transformers - Alexander Mück - p.10/10

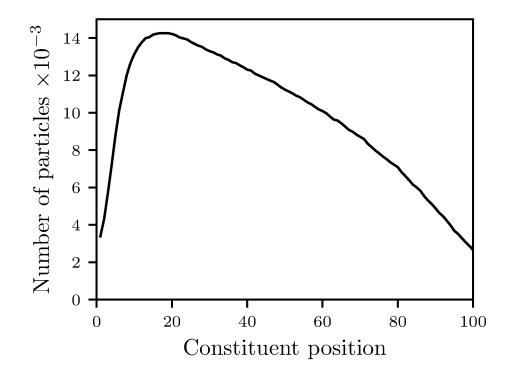


Backup

Learning the language of QCD jets with transformers - Alexander Mück - p.11/10



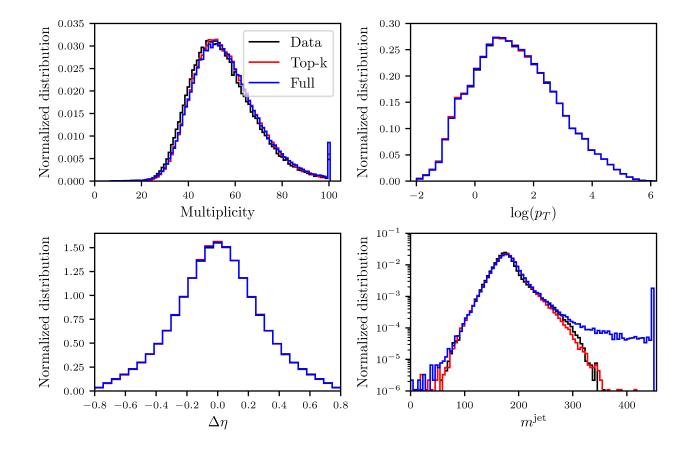
How many different particle types are in the data set?



Learning the language of QCD jets with transformers – Alexander Mück – p.12/10



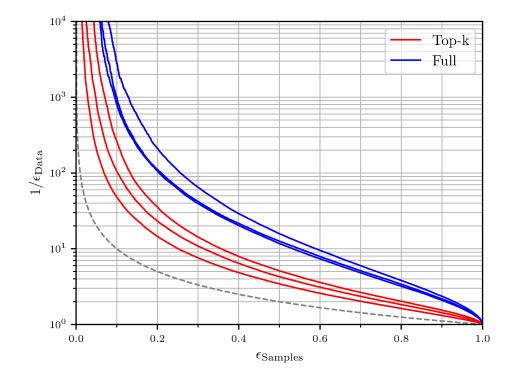
Training on and sampling top jets: 1D distributions



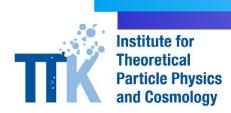
Learning the language of QCD jets with transformers – Alexander Mück – p.13/10



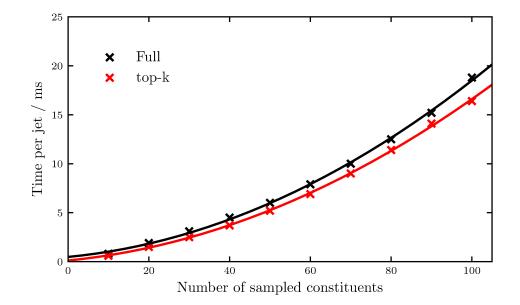
Training on and sampling top jets: Classifier test



Learning the language of QCD jets with transformers – Alexander Mück – p.14/10



Sampling speed:



Learning the language of QCD jets with transformers - Alexander Mück - p.15/10