The MadNIS Reloaded

Theo Heimel November 2023

Institut für theoretische Physik Universität Heidelberg

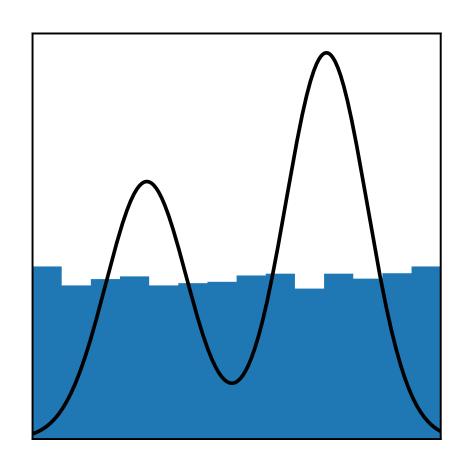
[2311.01548] TH, Huetsch, Maltoni, Mattelaer, Plehn, Winterhalder

Introduction

How can we make event generation faster?

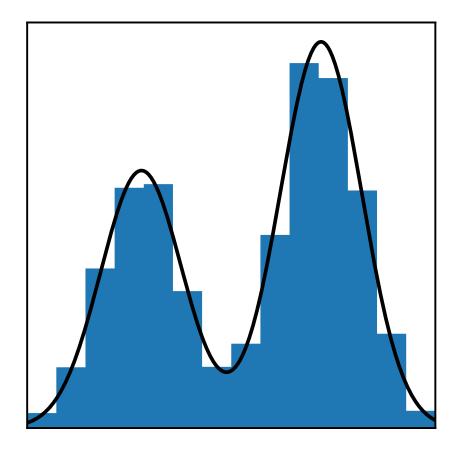
Efficient integration and sampling from differential cross section

$$d\sigma = \frac{1}{\text{flux}} dx_a dx_b f(x_a) f(x_b) d\Phi_n \langle |M_{\lambda,c,...}(p_a, p_b | p_1, ..., p_n)|^2 \rangle$$



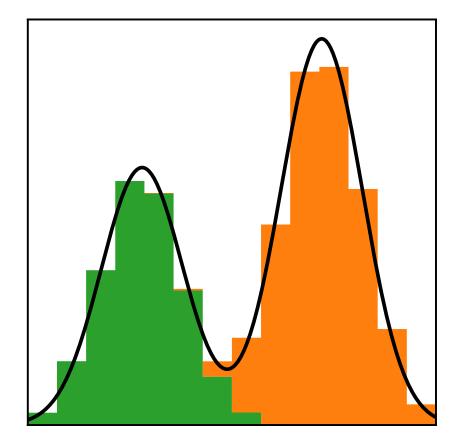
Flat sampling: inefficient

$$I = \langle f(x) \rangle_{x \sim p(x)}$$



Importance sampling: mapping close to integrand

$$I = \left\langle \frac{f(x)}{g(x)} \right\rangle_{x \sim g(x)}$$



Multi-channeling: mapping for each channel

$$I = \sum_{i} \left\langle \alpha_{i}(x) \frac{f(x)}{g_{i}(x)} \right\rangle_{x \sim g_{i}(x)}$$

Introduction

How can we make event generation faster?

Efficient integration and sampling from differential cross section

$$d\sigma = \frac{1}{\text{flux}} dx_a dx_b f(x_a) f(x_b) d\Phi_n \langle |M_{\lambda,c,...}(p_a, p_b | p_1, ..., p_n)|^2 \rangle$$

Sum over channels

MadGraph: build channels' from Feynman diagrams

Channel weights

MadGraph: $\alpha_i \sim |M_i|^2$ or $\alpha_i \sim \prod |p_k^2 - m_k^2 - \mathrm{i} M_k \Gamma_k|^{-2}$

Integrand

MadGraph: $d\sigma/dx$

Channel mappings

MadGraph: use propagators, ...
Refine with VEGAS
(factorized, histogram based importance sampling)

MadNIS: Neural Importance Sampling

$$I = \sum_{i} \left\langle \alpha_{i}(x) \frac{f(x)}{g_{i}(x)} \right\rangle_{x \sim g_{i}(x)}$$

Use physics knowledge to construct channels and mappings

Normalizing Flow to refine channel mappings

Fully connected network to refine channel weights

Optimize simultaneously with integral variance as loss function

Basic functionality

Neural Channel Weights

MadGraph

matrix

elements

Normalizing Flow

MadEvent channel mappings

Improved Multichanneling

Stratified sampling/training

Symmetries between channels

Removing channels

Partial weight buffering

Improved training

VEGAS initialization

Buffered training

Basic functionality

Neural Channel Weights

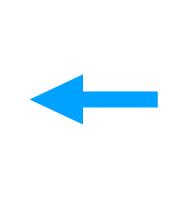
MadGraph

matrix

elements

Normalizing Flow

MadEvent channel mappings



Improved Multichanneling

Stratified sampling/training

Symmetries between channels

Removing channels

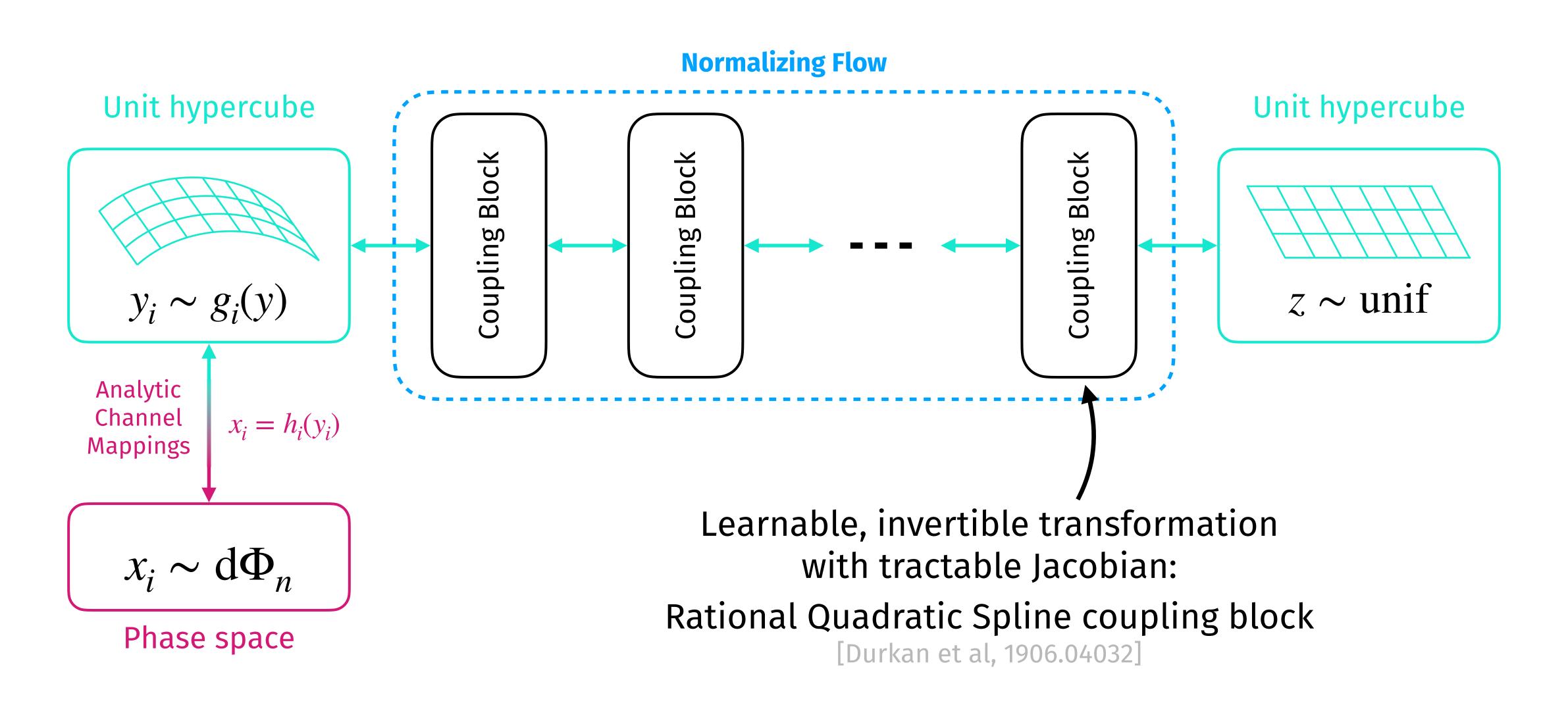
Partial weight buffering

Improved training

VEGAS initialization

Buffered training

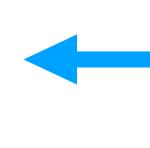
Neural Importance Sampling



Basic functionality

Neural Channel Weights

Normalizing Flow



- (MadNIS)

Stratified sampling/training

Removing

channels

Symmetries between channels

Partial weight buffering

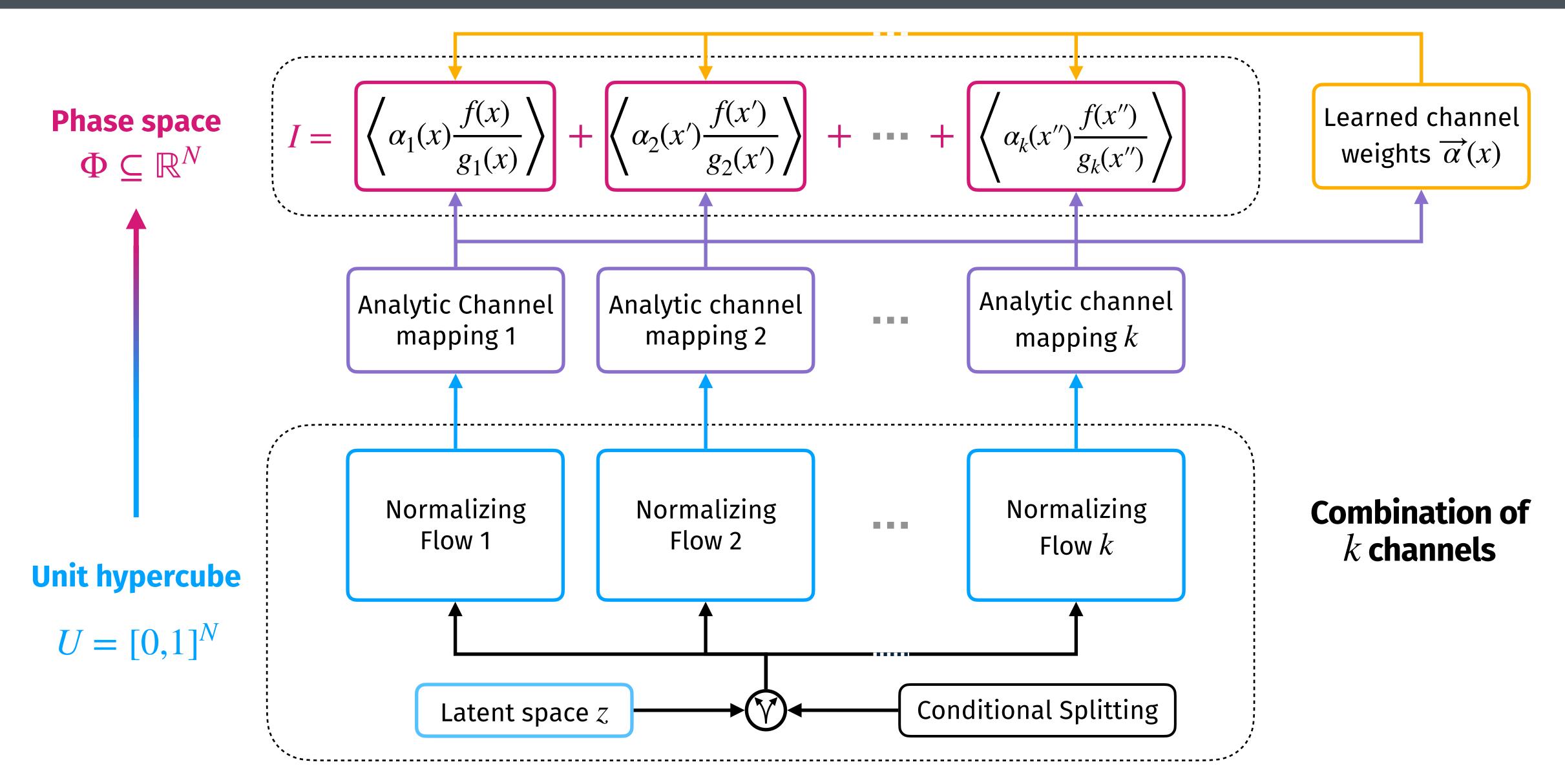
MadGraph matrix elements MadEvent channel mappings

Improved training

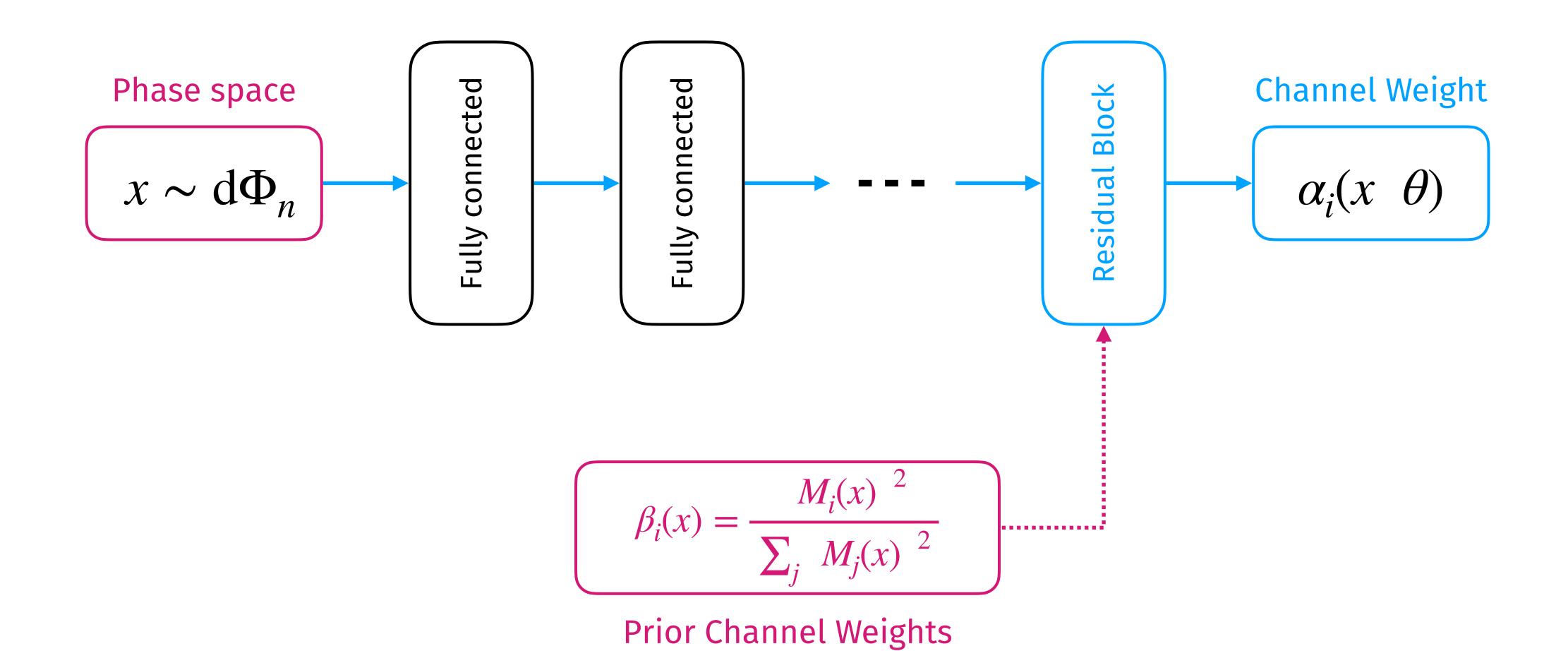
VEGAS initialization

Buffered training

MADNIS: Neural Importance Sampling



Neural Channel Weights



Loss function

Training objective:
Minimize total variance

$$\sigma_{\mathrm{tot}}^2 = N \sum_{i} \frac{\sigma_i^2}{N_i}$$
 with

$$\sigma_i^2 = \text{Var}\left(\alpha_i(x) \frac{f(x)}{g_i(x)}\right)_{x \sim g_i(x)}$$

Optimal MC weights depend on N_i

assume choice of N_i during training: use stratified sampling

$$N_i = N \frac{\sigma_i}{\sum_k \sigma_k}$$

$$\mathscr{L} = \sigma_{\text{tot}}^2 = \sum_{i,k} \sigma_i \, \sigma_k$$

Basic functionality

Neural Channel Weights

Normalizing Flow

MadGraph matrix elements

MadEvent channel mappings

Improved Multichanneling

Stratified sampling/training

Symmetries between channels

Removing channels

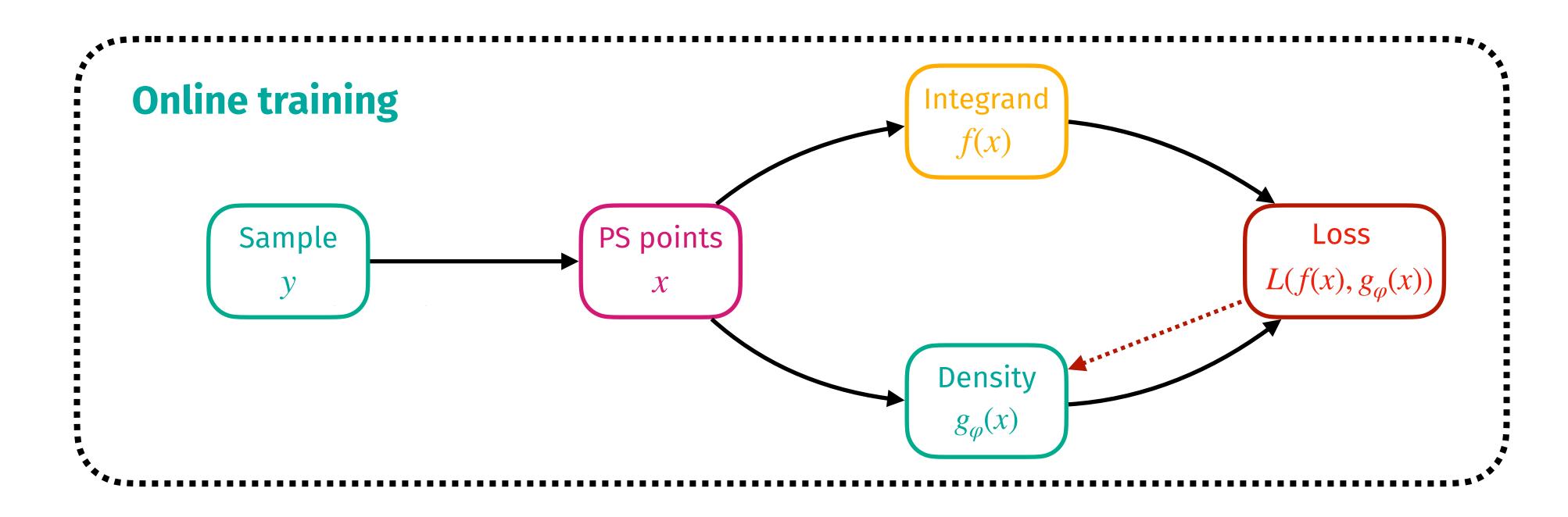
Partial weight buffering

Improved training

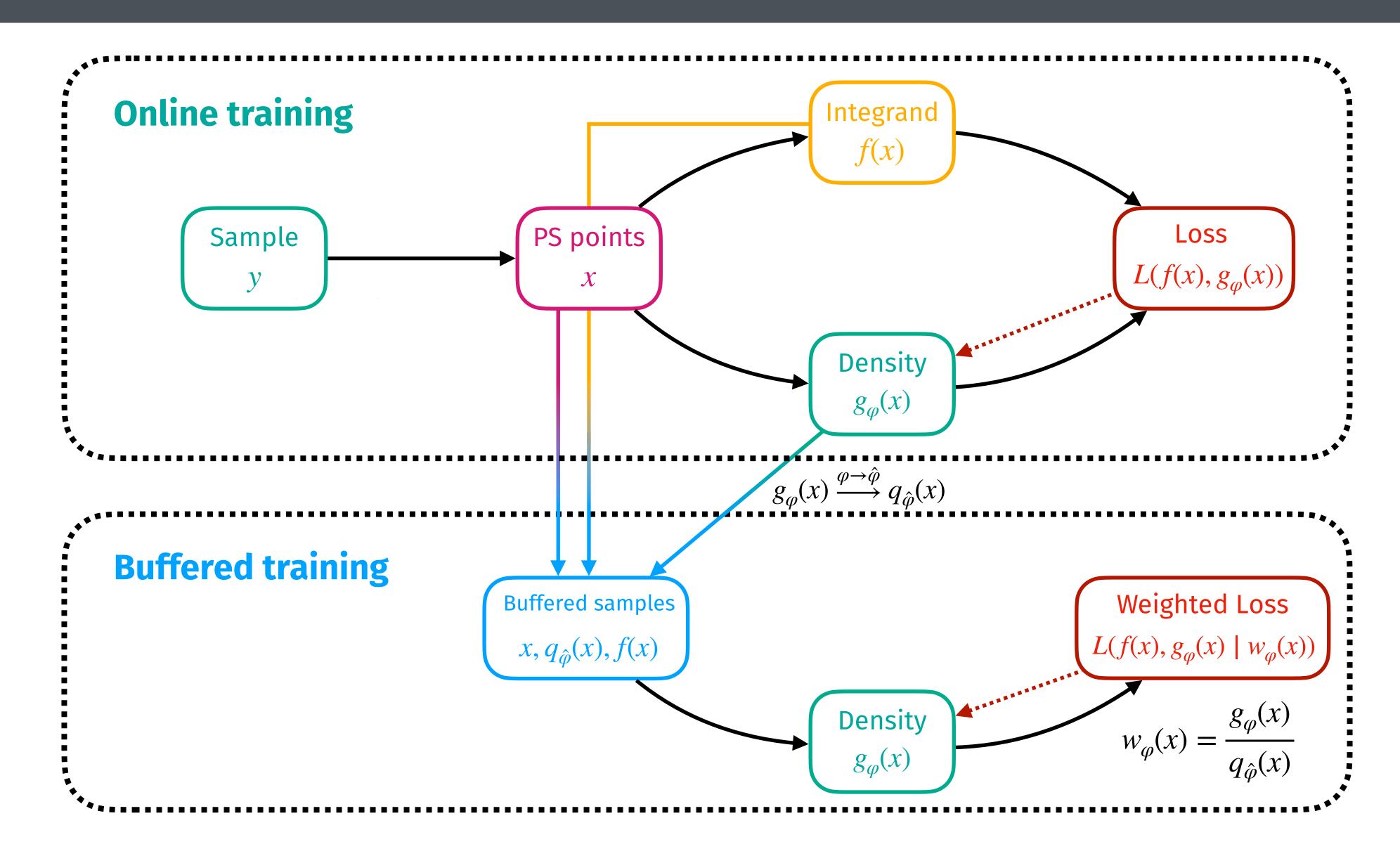
VEGAS initialization

Buffered training

Buffered Training



Buffered Training



Buffered Training

Training algorithm

generate new samples, train on them, save samples

↓

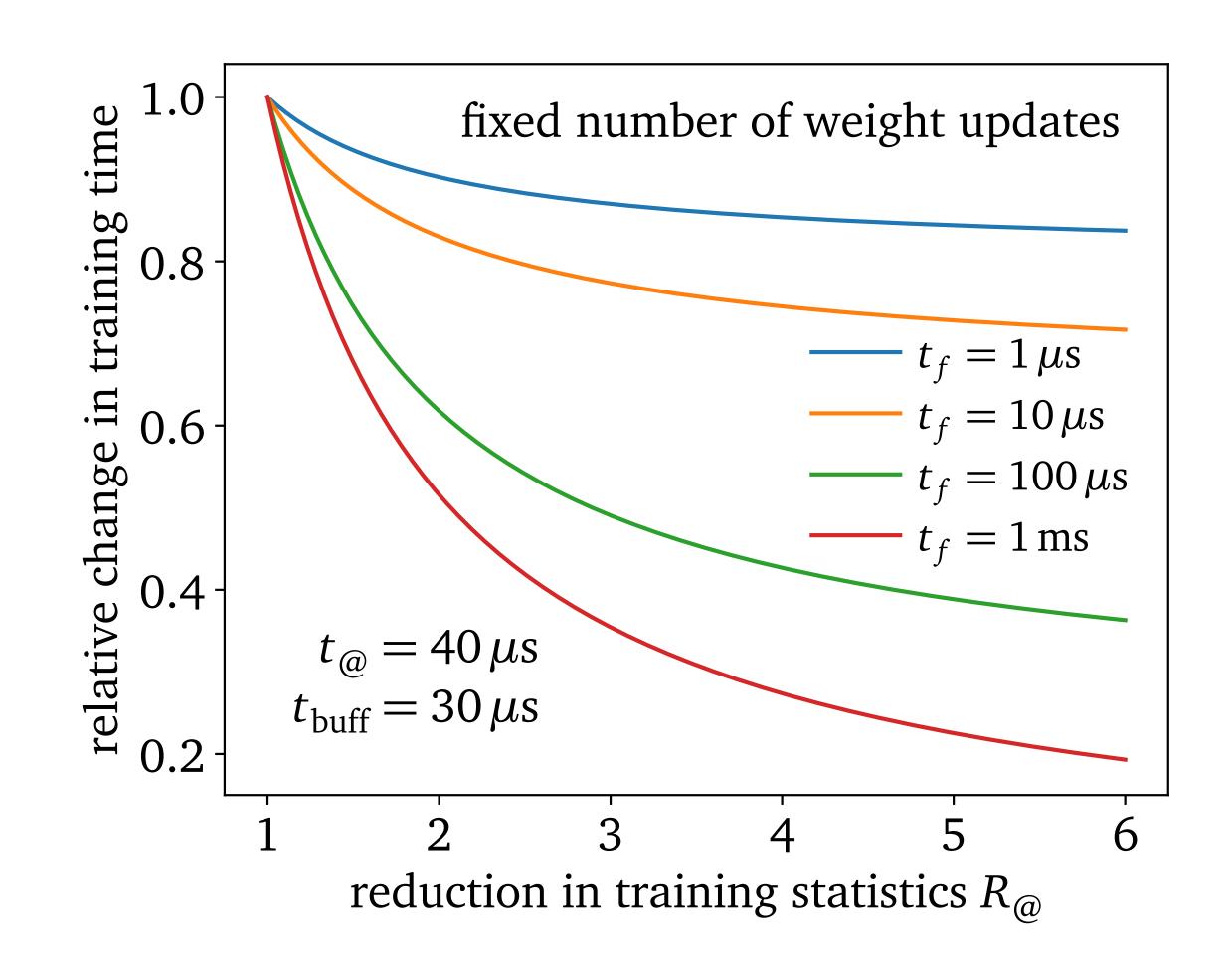
train on saved samples *n* times

↓ nea

repeat

Reduction in training statistics by

$$R_{@} = n + 1$$



Basic functionality

Neural Channel Weights

Normalizing Flow

MadGraph matrix elements

MadEvent channel mappings

Improved Multichanneling

Stratified sampling/training

Symmetries between channels

Removing channels

Partial weight buffering

Improved training

VEGAS initialization

Buffered training

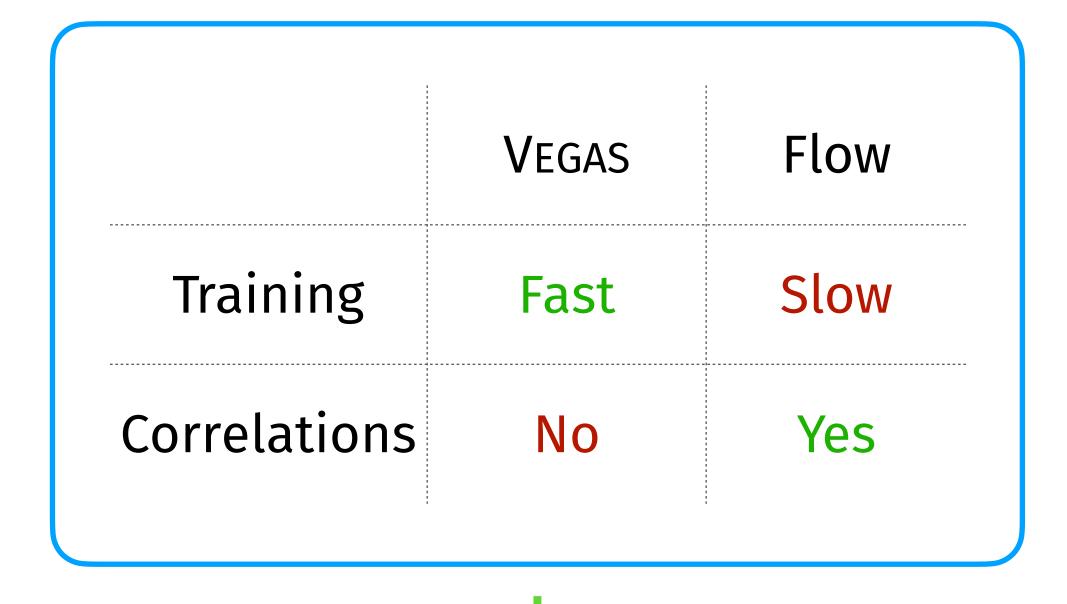
VEGAS Initialization

	VEGAS	Flow
Training	Fast	Slow
Correlations	No	Yes

Combine advantages:

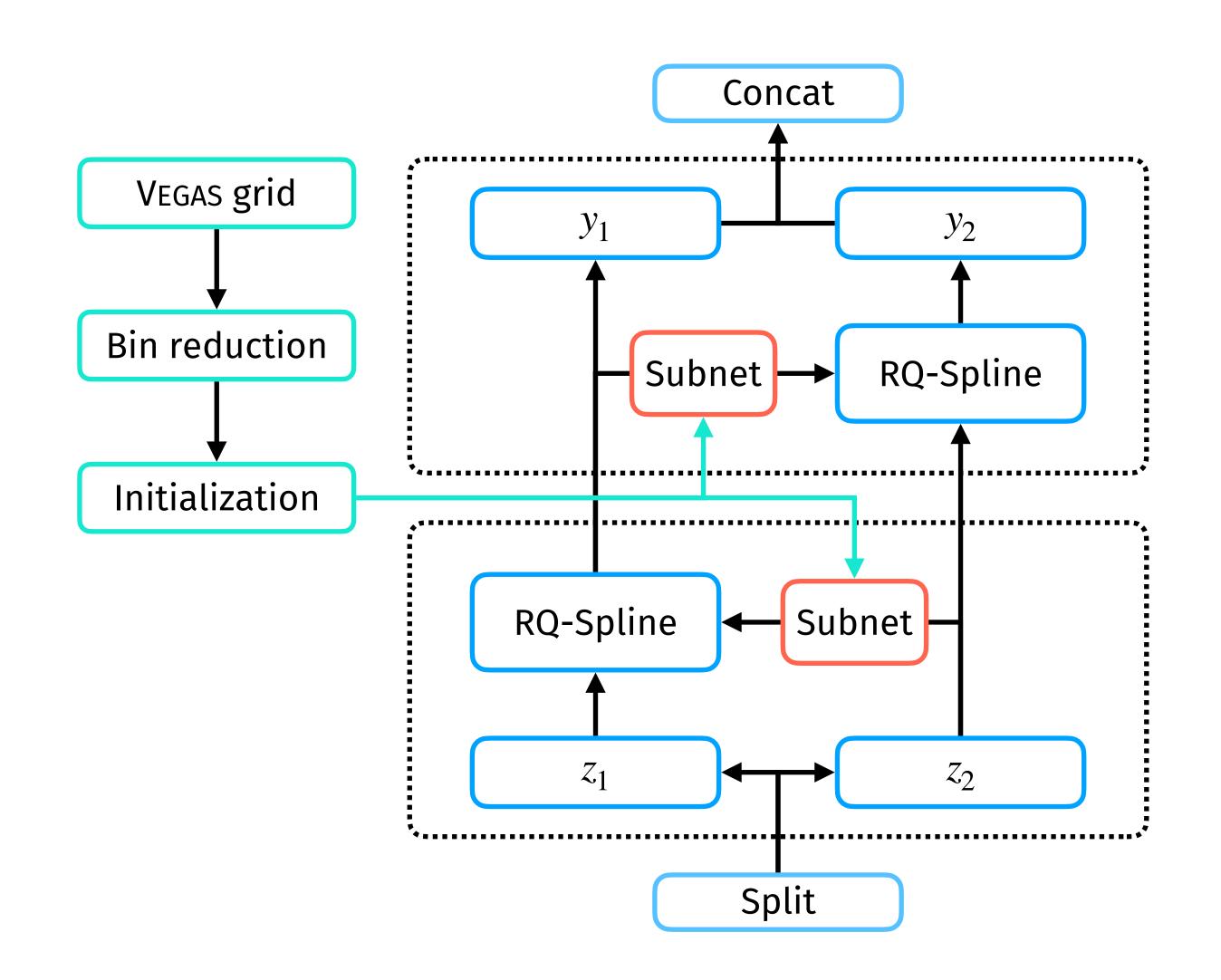
Pre-trained VEGAS grid as starting point for flow training

VEGAS Initialization



Combine advantages:

Pre-trained VEGAS grid as starting point for flow training



Basic functionality

Neural Channel Weights

Normalizing Flow

MadGraph matrix elements

MadEvent channel mappings

Improved Multichanneling

Stratified sampling/training

Symmetries between channels

Removing channels

Partial weight buffering

Improved training

VEGAS initialization

Buffered training

Improved Multichanneling

Use symmetries

Groups of channels only differ by permutations of final state momenta

 \downarrow

use **common flows** and combine in loss function

Stratified training

Channels have different contributions to the total variance

more samples for channels with higher variance during training

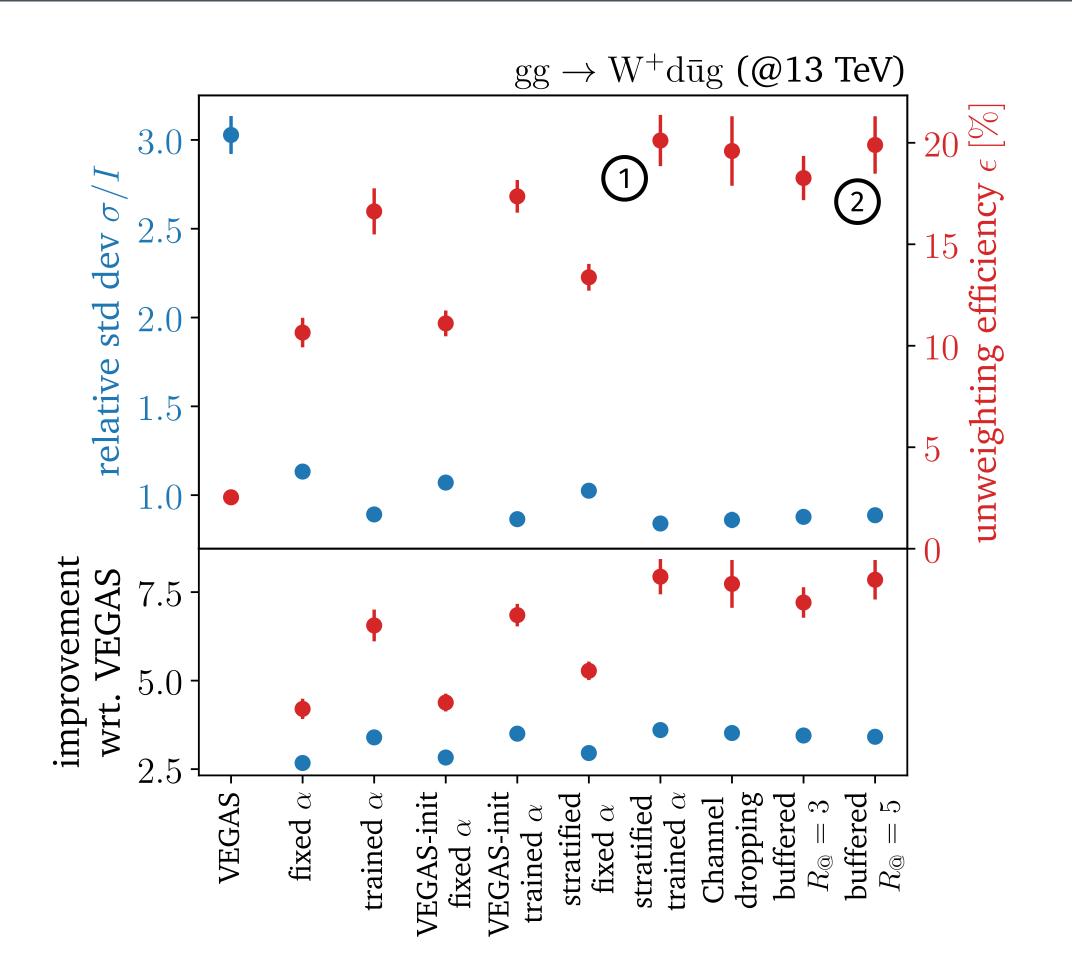
Channel dropping

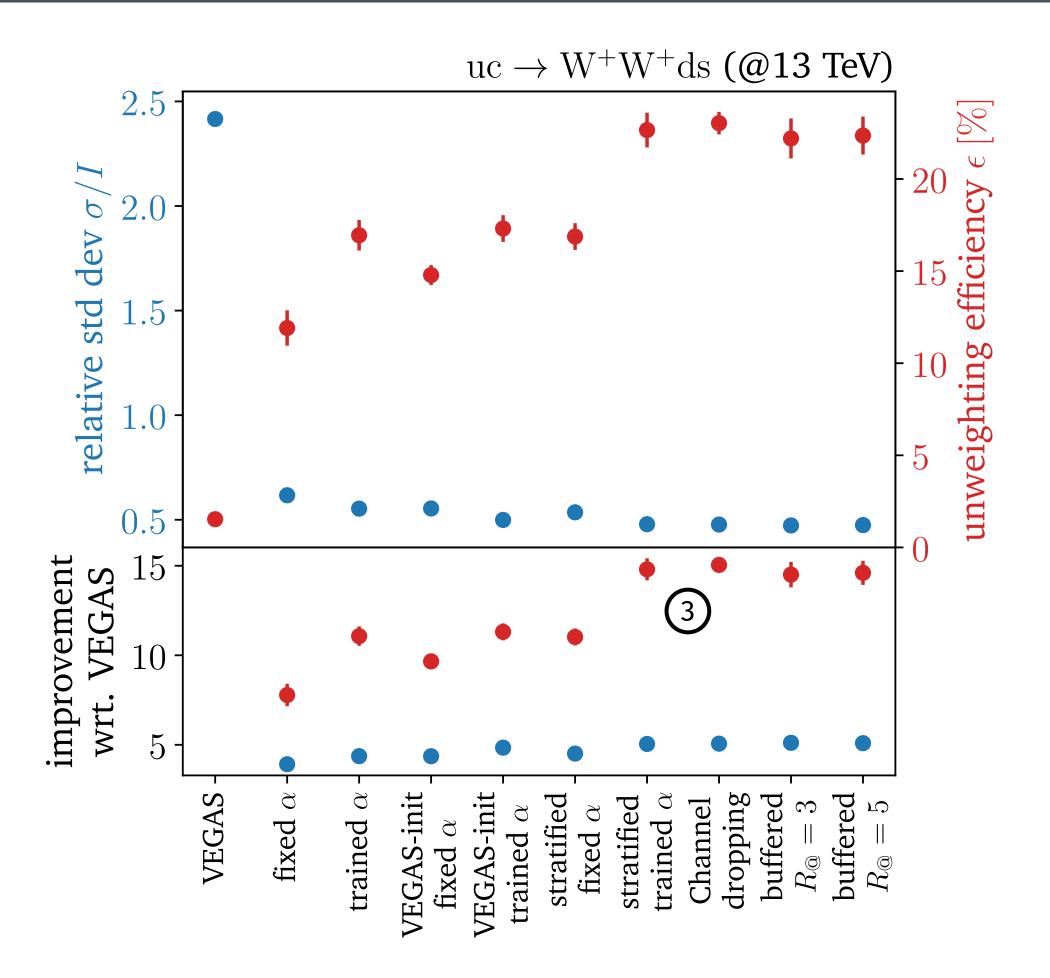
MadNIS often reduces
contribution of some
channels to total integral

remove insignificant channels from the training completely

Reduced complexity Improved stability

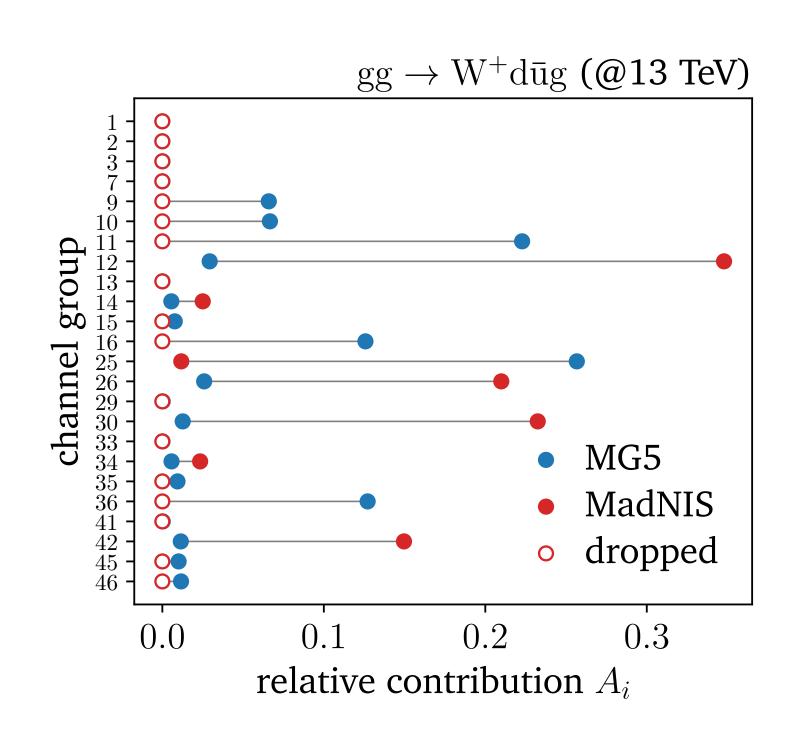
LHC processes

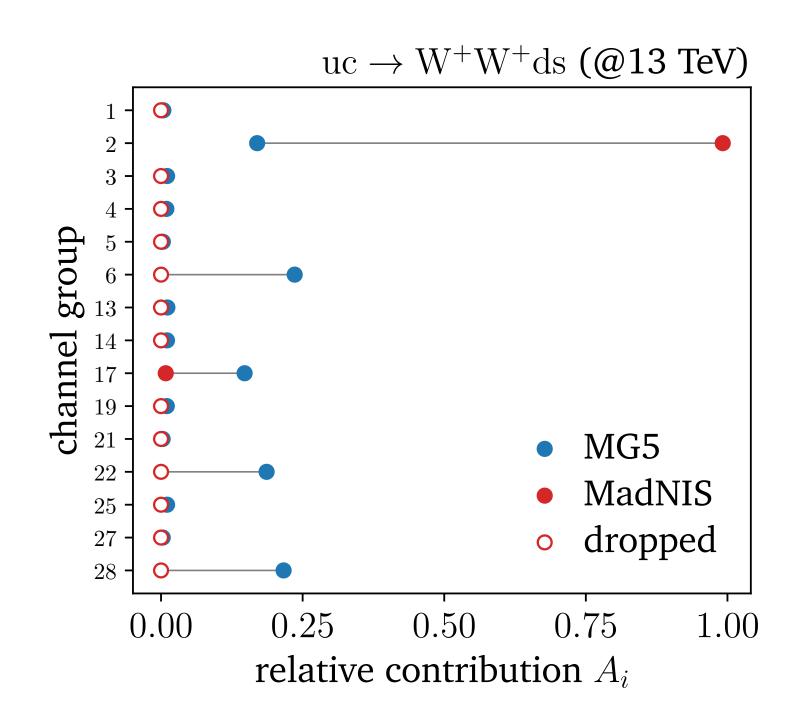




- 1. Excellent results by combining all improvements!
 - 2. Same performance with buffered training
- 3. Even larger improvements for process with large interference terms

Learned channel weights



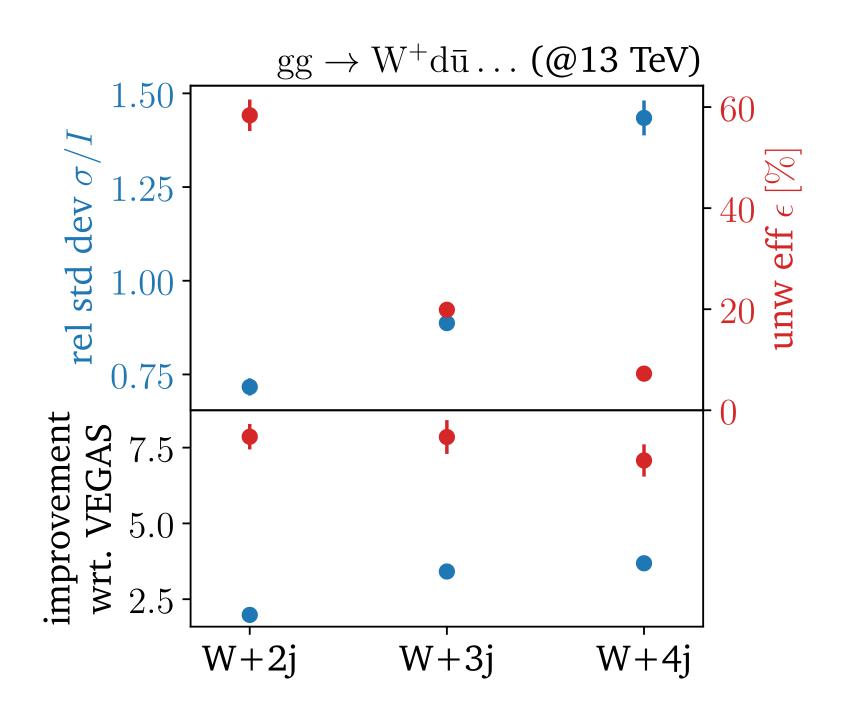


MadNIS often sends weight of many channels to 0

↓

dropping channels makes training and event generation more stable and efficient

Scaling with multiplicity



 $gg o tar{t}g \dots$ (@13 TeV)

1.25

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

 $gg \rightarrow W^+ d\bar{u}gg$ 384 channels, 108 symm. 7x better than VEGAS

gg → ttggg 945 channels, 119 symm. 5x better than VEGAS

Large improvements compared to Vegas even for high multiplicities and many channels!

Outlook

The MadNIS Reloaded

Large improvements, even for high multiplicities and complicated processes!

[2311.01548]

Future plans

Make MadNIS part of next MadGraph version

